fbpx
Wikipedia

Linear system of divisors

In algebraic geometry, a linear system of divisors is an algebraic generalization of the geometric notion of a family of curves; the dimension of the linear system corresponds to the number of parameters of the family.

A linear system of divisors algebraicizes the classic geometric notion of a family of curves, as in the Apollonian circles.

These arose first in the form of a linear system of algebraic curves in the projective plane. It assumed a more general form, through gradual generalisation, so that one could speak of linear equivalence of divisors D on a general scheme or even a ringed space (X, OX).[1]

Linear system of dimension 1, 2, or 3 are called a pencil, a net, or a web, respectively.

A map determined by a linear system is sometimes called the Kodaira map.

Definitions edit

Given a general variety  , two divisors   are linearly equivalent if

 

for some non-zero rational function   on  , or in other words a non-zero element   of the function field  . Here   denotes the divisor of zeroes and poles of the function  .

Note that if   has singular points, the notion of 'divisor' is inherently ambiguous (Cartier divisors, Weil divisors: see divisor (algebraic geometry)). The definition in that case is usually said with greater care (using invertible sheaves or holomorphic line bundles); see below.

A complete linear system on   is defined as the set of all effective divisors linearly equivalent to some given divisor  . It is denoted  . Let   be the line bundle associated to  . In the case that   is a nonsingular projective variety, the set   is in natural bijection with  [2] by associating the element   of   to the set of non-zero multiples of   (this is well defined since two non-zero rational functions have the same divisor if and only if they are non-zero multiples of each other). A complete linear system   is therefore a projective space.

A linear system   is then a projective subspace of a complete linear system, so it corresponds to a vector subspace W of   The dimension of the linear system   is its dimension as a projective space. Hence  .

Linear systems can also be introduced by means of the line bundle or invertible sheaf language. In those terms, divisors   (Cartier divisors, to be precise) correspond to line bundles, and linear equivalence of two divisors means that the corresponding line bundles are isomorphic.

Examples edit

Linear equivalence edit

Consider the line bundle   on   whose sections   define quadric surfaces. For the associated divisor  , it is linearly equivalent to any other divisor defined by the vanishing locus of some   using the rational function  [2] (Proposition 7.2). For example, the divisor   associated to the vanishing locus of   is linearly equivalent to the divisor   associated to the vanishing locus of  . Then, there is the equivalence of divisors

 

Linear systems on curves edit

One of the important complete linear systems on an algebraic curve   of genus   is given by the complete linear system associated with the canonical divisor  , denoted  . This definition follows from proposition II.7.7 of Hartshorne[2] since every effective divisor in the linear system comes from the zeros of some section of  .

Hyperelliptic curves edit

One application of linear systems is used in the classification of algebraic curves. A hyperelliptic curve is a curve   with a degree   morphism  .[2] For the case   all curves are hyperelliptic: the Riemann–Roch theorem then gives the degree of   is   and  , hence there is a degree   map to  .

grd edit

A   is a linear system   on a curve   which is of degree   and dimension  . For example, hyperelliptic curves have a   since   defines one. In fact, hyperelliptic curves have a unique  [2] from proposition 5.3. Another close set of examples are curves with a   which are called trigonal curves. In fact, any curve has a   for  .[3]

Linear systems of hypersurfaces in a projective space edit

Consider the line bundle   over  . If we take global sections  , then we can take its projectivization  . This is isomorphic to   where

 

Then, using any embedding   we can construct a linear system of dimension  .

Linear system of conics edit

Characteristic linear system of a family of curves edit

The characteristic linear system of a family of curves on an algebraic surface Y for a curve C in the family is a linear system formed by the curves in the family that are infinitely near C.[4]

In modern terms, it is a subsystem of the linear system associated to the normal bundle to  . Note a characteristic system need not to be complete; in fact, the question of completeness is something studied extensively by the Italian school without a satisfactory conclusion; nowadays, the Kodaira–Spencer theory can be used to answer the question of the completeness.

Other examples edit

The Cayley–Bacharach theorem is a property of a pencil of cubics, which states that the base locus satisfies an "8 implies 9" property: any cubic containing 8 of the points necessarily contains the 9th.

Linear systems in birational geometry edit

In general linear systems became a basic tool of birational geometry as practised by the Italian school of algebraic geometry. The technical demands became quite stringent; later developments clarified a number of issues. The computation of the relevant dimensions — the Riemann–Roch problem as it can be called — can be better phrased in terms of homological algebra. The effect of working on varieties with singular points is to show up a difference between Weil divisors (in the free abelian group generated by codimension-one subvarieties), and Cartier divisors coming from sections of invertible sheaves.

The Italian school liked to reduce the geometry on an algebraic surface to that of linear systems cut out by surfaces in three-space; Zariski wrote his celebrated book Algebraic Surfaces to try to pull together the methods, involving linear systems with fixed base points. There was a controversy, one of the final issues in the conflict between 'old' and 'new' points of view in algebraic geometry, over Henri Poincaré's characteristic linear system of an algebraic family of curves on an algebraic surface.

Base locus edit

The base locus of a linear system of divisors on a variety refers to the subvariety of points 'common' to all divisors in the linear system. Geometrically, this corresponds to the common intersection of the varieties. Linear systems may or may not have a base locus – for example, the pencil of affine lines   has no common intersection, but given two (nondegenerate) conics in the complex projective plane, they intersect in four points (counting with multiplicity) and thus the pencil they define has these points as base locus.

More precisely, suppose that   is a complete linear system of divisors on some variety  . Consider the intersection

 

where   denotes the support of a divisor, and the intersection is taken over all effective divisors   in the linear system. This is the base locus of   (as a set, at least: there may be more subtle scheme-theoretic considerations as to what the structure sheaf of   should be).

One application of the notion of base locus is to nefness of a Cartier divisor class (i.e. complete linear system). Suppose   is such a class on a variety  , and   an irreducible curve on  . If   is not contained in the base locus of  , then there exists some divisor   in the class which does not contain  , and so intersects it properly. Basic facts from intersection theory then tell us that we must have  . The conclusion is that to check nefness of a divisor class, it suffices to compute the intersection number with curves contained in the base locus of the class. So, roughly speaking, the 'smaller' the base locus, the 'more likely' it is that the class is nef.

In the modern formulation of algebraic geometry, a complete linear system   of (Cartier) divisors on a variety   is viewed as a line bundle   on  . From this viewpoint, the base locus   is the set of common zeroes of all sections of  . A simple consequence is that the bundle is globally generated if and only if the base locus is empty.

The notion of the base locus still makes sense for a non-complete linear system as well: the base locus of it is still the intersection of the supports of all the effective divisors in the system.

Example edit

Consider the Lefschetz pencil   given by two generic sections  , so   given by the scheme

 

This has an associated linear system of divisors since each polynomial,   for a fixed   is a divisor in  . Then, the base locus of this system of divisors is the scheme given by the vanishing locus of  , so

 

A map determined by a linear system edit

Each linear system on an algebraic variety determines a morphism from the complement of the base locus to a projective space of dimension of the system, as follows. (In a sense, the converse is also true; see the section below)

Let L be a line bundle on an algebraic variety X and   a finite-dimensional vector subspace. For the sake of clarity, we first consider the case when V is base-point-free; in other words, the natural map   is surjective (here, k = the base field). Or equivalently,   is surjective. Hence, writing   for the trivial vector bundle and passing the surjection to the relative Proj, there is a closed immersion:

 

where   on the right is the invariance of the projective bundle under a twist by a line bundle. Following i by a projection, there results in the map:[5]

 

When the base locus of V is not empty, the above discussion still goes through with   in the direct sum replaced by an ideal sheaf defining the base locus and X replaced by the blow-up   of it along the (scheme-theoretic) base locus B. Precisely, as above, there is a surjection   where   is the ideal sheaf of B and that gives rise to

 

Since   an open subset of  , there results in the map:

 

Finally, when a basis of V is chosen, the above discussion becomes more down-to-earth (and that is the style used in Hartshorne, Algebraic Geometry).

Linear system determined by a map to a projective space edit

Each morphism from an algebraic variety to a projective space determines a base-point-free linear system on the variety; because of this, a base-point-free linear system and a map to a projective space are often used interchangeably.

For a closed immersion   of algebraic varieties there is a pullback of a linear system   on   to  , defined as  [2] (page 158).

O(1) on a projective variety edit

A projective variety   embedded in   has a natural linear system determining a map to projective space from  . This sends a point   to its corresponding point  .

See also edit

References edit

  1. ^ Grothendieck, Alexandre; Dieudonné, Jean. EGA IV, 21.3.
  2. ^ a b c d e f Hartshorne, R. 'Algebraic Geometry', proposition II.7.2, page 151, proposition II.7.7, page 157, page 158, exercise IV.1.7, page 298, proposition IV.5.3, page 342
  3. ^ Kleiman, Steven L.; Laksov, Dan (1974). "Another proof of the existence of special divisors". Acta Mathematica. 132: 163–176. doi:10.1007/BF02392112. ISSN 0001-5962.
  4. ^ Arbarello, Enrico; Cornalba, Maurizio; Griffiths, Phillip (2011). Geometry of algebraic curves. Grundlehren der Mathematischen Wissenschaften. Vol. II, with a contribution by Joseph Daniel Harris. Heidelberg: Springer. p. 3. doi:10.1007/978-1-4757-5323-3. ISBN 978-1-4419-2825-2. MR 2807457.
  5. ^ Fulton, William (1998). "§ 4.4. Linear Systems". Intersection Theory. Springer. doi:10.1007/978-1-4612-1700-8_5.

linear, system, divisors, kodaira, redirects, here, confused, with, kodaira, spencer, from, cohomology, theory, algebraic, geometry, linear, system, divisors, algebraic, generalization, geometric, notion, family, curves, dimension, linear, system, corresponds,. Kodaira map redirects here Not to be confused with Kodaira Spencer map from cohomology theory In algebraic geometry a linear system of divisors is an algebraic generalization of the geometric notion of a family of curves the dimension of the linear system corresponds to the number of parameters of the family A linear system of divisors algebraicizes the classic geometric notion of a family of curves as in the Apollonian circles These arose first in the form of a linear system of algebraic curves in the projective plane It assumed a more general form through gradual generalisation so that one could speak of linear equivalence of divisors D on a general scheme or even a ringed space X OX 1 Linear system of dimension 1 2 or 3 are called a pencil a net or a web respectively A map determined by a linear system is sometimes called the Kodaira map Contents 1 Definitions 2 Examples 2 1 Linear equivalence 2 2 Linear systems on curves 2 2 1 Hyperelliptic curves 2 2 2 grd 2 3 Linear systems of hypersurfaces in a projective space 2 4 Linear system of conics 2 5 Characteristic linear system of a family of curves 2 6 Other examples 3 Linear systems in birational geometry 4 Base locus 4 1 Example 5 A map determined by a linear system 6 Linear system determined by a map to a projective space 6 1 O 1 on a projective variety 7 See also 8 ReferencesDefinitions editGiven a general variety X displaystyle X nbsp two divisors D E Div X displaystyle D E in text Div X nbsp are linearly equivalent if E D f displaystyle E D f nbsp for some non zero rational function f displaystyle f nbsp on X displaystyle X nbsp or in other words a non zero element f displaystyle f nbsp of the function field k X displaystyle k X nbsp Here f displaystyle f nbsp denotes the divisor of zeroes and poles of the function f displaystyle f nbsp Note that if X displaystyle X nbsp has singular points the notion of divisor is inherently ambiguous Cartier divisors Weil divisors see divisor algebraic geometry The definition in that case is usually said with greater care using invertible sheaves or holomorphic line bundles see below A complete linear system on X displaystyle X nbsp is defined as the set of all effective divisors linearly equivalent to some given divisor D Div X displaystyle D in text Div X nbsp It is denoted D displaystyle D nbsp Let L displaystyle mathcal L nbsp be the line bundle associated to D displaystyle D nbsp In the case that X displaystyle X nbsp is a nonsingular projective variety the set D displaystyle D nbsp is in natural bijection with G X L 0 k displaystyle Gamma X mathcal L smallsetminus 0 k ast nbsp 2 by associating the element E D f displaystyle E D f nbsp of D displaystyle D nbsp to the set of non zero multiples of f displaystyle f nbsp this is well defined since two non zero rational functions have the same divisor if and only if they are non zero multiples of each other A complete linear system D displaystyle D nbsp is therefore a projective space A linear system d displaystyle mathfrak d nbsp is then a projective subspace of a complete linear system so it corresponds to a vector subspace W of G X L displaystyle Gamma X mathcal L nbsp The dimension of the linear system d displaystyle mathfrak d nbsp is its dimension as a projective space Hence dim d dim W 1 displaystyle dim mathfrak d dim W 1 nbsp Linear systems can also be introduced by means of the line bundle or invertible sheaf language In those terms divisors D displaystyle D nbsp Cartier divisors to be precise correspond to line bundles and linear equivalence of two divisors means that the corresponding line bundles are isomorphic Examples editLinear equivalence editConsider the line bundle O 2 displaystyle mathcal O 2 nbsp on P3 displaystyle mathbb P 3 nbsp whose sections s G P3 O 2 displaystyle s in Gamma mathbb P 3 mathcal O 2 nbsp define quadric surfaces For the associated divisor Ds Z s displaystyle D s Z s nbsp it is linearly equivalent to any other divisor defined by the vanishing locus of some t G P3 O 2 displaystyle t in Gamma mathbb P 3 mathcal O 2 nbsp using the rational function t s displaystyle left t s right nbsp 2 Proposition 7 2 For example the divisor D displaystyle D nbsp associated to the vanishing locus of x2 y2 z2 w2 displaystyle x 2 y 2 z 2 w 2 nbsp is linearly equivalent to the divisor E displaystyle E nbsp associated to the vanishing locus of xy displaystyle xy nbsp Then there is the equivalence of divisorsD E x2 y2 z2 w2xy displaystyle D E left frac x 2 y 2 z 2 w 2 xy right nbsp Linear systems on curves edit One of the important complete linear systems on an algebraic curve C displaystyle C nbsp of genus g displaystyle g nbsp is given by the complete linear system associated with the canonical divisor K displaystyle K nbsp denoted K P H0 C wC displaystyle K mathbb P H 0 C omega C nbsp This definition follows from proposition II 7 7 of Hartshorne 2 since every effective divisor in the linear system comes from the zeros of some section of wC displaystyle omega C nbsp Hyperelliptic curves edit One application of linear systems is used in the classification of algebraic curves A hyperelliptic curve is a curve C displaystyle C nbsp with a degree 2 displaystyle 2 nbsp morphism f C P1 displaystyle f C to mathbb P 1 nbsp 2 For the case g 2 displaystyle g 2 nbsp all curves are hyperelliptic the Riemann Roch theorem then gives the degree of KC displaystyle K C nbsp is 2g 2 2 displaystyle 2g 2 2 nbsp and h0 KC 2 displaystyle h 0 K C 2 nbsp hence there is a degree 2 displaystyle 2 nbsp map to P1 P H0 C wC displaystyle mathbb P 1 mathbb P H 0 C omega C nbsp grd edit A grd displaystyle g r d nbsp is a linear system d displaystyle mathfrak d nbsp on a curve C displaystyle C nbsp which is of degree d displaystyle d nbsp and dimension r displaystyle r nbsp For example hyperelliptic curves have a g21 displaystyle g 2 1 nbsp since KC displaystyle K C nbsp defines one In fact hyperelliptic curves have a unique g21 displaystyle g 2 1 nbsp 2 from proposition 5 3 Another close set of examples are curves with a g13 displaystyle g 1 3 nbsp which are called trigonal curves In fact any curve has a g1d displaystyle g 1 d nbsp for d 1 2 g 1 displaystyle d geq 1 2 g 1 nbsp 3 Linear systems of hypersurfaces in a projective space edit Consider the line bundle O d displaystyle mathcal O d nbsp over Pn displaystyle mathbb P n nbsp If we take global sections V G O d displaystyle V Gamma mathcal O d nbsp then we can take its projectivization P V displaystyle mathbb P V nbsp This is isomorphic to PN displaystyle mathbb P N nbsp where N n dn 1 displaystyle N binom n d n 1 nbsp Then using any embedding Pk PN displaystyle mathbb P k to mathbb P N nbsp we can construct a linear system of dimension k displaystyle k nbsp Linear system of conics edit Main article Linear system of conics Characteristic linear system of a family of curves edit The characteristic linear system of a family of curves on an algebraic surface Y for a curve C in the family is a linear system formed by the curves in the family that are infinitely near C 4 In modern terms it is a subsystem of the linear system associated to the normal bundle to C Y displaystyle C hookrightarrow Y nbsp Note a characteristic system need not to be complete in fact the question of completeness is something studied extensively by the Italian school without a satisfactory conclusion nowadays the Kodaira Spencer theory can be used to answer the question of the completeness Other examples edit The Cayley Bacharach theorem is a property of a pencil of cubics which states that the base locus satisfies an 8 implies 9 property any cubic containing 8 of the points necessarily contains the 9th Linear systems in birational geometry editIn general linear systems became a basic tool of birational geometry as practised by the Italian school of algebraic geometry The technical demands became quite stringent later developments clarified a number of issues The computation of the relevant dimensions the Riemann Roch problem as it can be called can be better phrased in terms of homological algebra The effect of working on varieties with singular points is to show up a difference between Weil divisors in the free abelian group generated by codimension one subvarieties and Cartier divisors coming from sections of invertible sheaves The Italian school liked to reduce the geometry on an algebraic surface to that of linear systems cut out by surfaces in three space Zariski wrote his celebrated book Algebraic Surfaces to try to pull together the methods involving linear systems with fixed base points There was a controversy one of the final issues in the conflict between old and new points of view in algebraic geometry over Henri Poincare s characteristic linear system of an algebraic family of curves on an algebraic surface Base locus editThe base locus of a linear system of divisors on a variety refers to the subvariety of points common to all divisors in the linear system Geometrically this corresponds to the common intersection of the varieties Linear systems may or may not have a base locus for example the pencil of affine lines x a displaystyle x a nbsp has no common intersection but given two nondegenerate conics in the complex projective plane they intersect in four points counting with multiplicity and thus the pencil they define has these points as base locus More precisely suppose that D displaystyle D nbsp is a complete linear system of divisors on some variety X displaystyle X nbsp Consider the intersection Bl D Deff D Supp Deff displaystyle operatorname Bl D bigcap D text eff in D operatorname Supp D text eff nbsp where Supp displaystyle operatorname Supp nbsp denotes the support of a divisor and the intersection is taken over all effective divisors Deff displaystyle D text eff nbsp in the linear system This is the base locus of D displaystyle D nbsp as a set at least there may be more subtle scheme theoretic considerations as to what the structure sheaf of Bl displaystyle operatorname Bl nbsp should be One application of the notion of base locus is to nefness of a Cartier divisor class i e complete linear system Suppose D displaystyle D nbsp is such a class on a variety X displaystyle X nbsp and C displaystyle C nbsp an irreducible curve on X displaystyle X nbsp If C displaystyle C nbsp is not contained in the base locus of D displaystyle D nbsp then there exists some divisor D displaystyle tilde D nbsp in the class which does not contain C displaystyle C nbsp and so intersects it properly Basic facts from intersection theory then tell us that we must have D C 0 displaystyle D cdot C geq 0 nbsp The conclusion is that to check nefness of a divisor class it suffices to compute the intersection number with curves contained in the base locus of the class So roughly speaking the smaller the base locus the more likely it is that the class is nef In the modern formulation of algebraic geometry a complete linear system D displaystyle D nbsp of Cartier divisors on a variety X displaystyle X nbsp is viewed as a line bundle O D displaystyle mathcal O D nbsp on X displaystyle X nbsp From this viewpoint the base locus Bl D displaystyle operatorname Bl D nbsp is the set of common zeroes of all sections of O D displaystyle mathcal O D nbsp A simple consequence is that the bundle is globally generated if and only if the base locus is empty The notion of the base locus still makes sense for a non complete linear system as well the base locus of it is still the intersection of the supports of all the effective divisors in the system See also Theorem of Bertini Example editConsider the Lefschetz pencil p X P1 displaystyle p mathfrak X to mathbb P 1 nbsp given by two generic sections f g G Pn O d displaystyle f g in Gamma mathbb P n mathcal O d nbsp so X displaystyle mathfrak X nbsp given by the schemeX Proj k s t x0 xn sf tg displaystyle mathfrak X text Proj left frac k s t x 0 ldots x n sf tg right nbsp This has an associated linear system of divisors since each polynomial s0f t0g displaystyle s 0 f t 0 g nbsp for a fixed s0 t0 P1 displaystyle s 0 t 0 in mathbb P 1 nbsp is a divisor in Pn displaystyle mathbb P n nbsp Then the base locus of this system of divisors is the scheme given by the vanishing locus of f g displaystyle f g nbsp soBl X Proj k s t x0 xn f g displaystyle text Bl mathfrak X text Proj left frac k s t x 0 ldots x n f g right nbsp A map determined by a linear system editEach linear system on an algebraic variety determines a morphism from the complement of the base locus to a projective space of dimension of the system as follows In a sense the converse is also true see the section below Let L be a line bundle on an algebraic variety X and V G X L displaystyle V subset Gamma X L nbsp a finite dimensional vector subspace For the sake of clarity we first consider the case when V is base point free in other words the natural map V kOX L displaystyle V otimes k mathcal O X to L nbsp is surjective here k the base field Or equivalently Sym V kOX OXL 1 n 0 OX displaystyle operatorname Sym V otimes k mathcal O X otimes mathcal O X L 1 to bigoplus n 0 infty mathcal O X nbsp is surjective Hence writing VX V X displaystyle V X V times X nbsp for the trivial vector bundle and passing the surjection to the relative Proj there is a closed immersion i X P VX L P VX P V X displaystyle i X hookrightarrow mathbb P V X otimes L simeq mathbb P V X mathbb P V times X nbsp where displaystyle simeq nbsp on the right is the invariance of the projective bundle under a twist by a line bundle Following i by a projection there results in the map 5 f X P V displaystyle f X to mathbb P V nbsp When the base locus of V is not empty the above discussion still goes through with OX displaystyle mathcal O X nbsp in the direct sum replaced by an ideal sheaf defining the base locus and X replaced by the blow up X displaystyle widetilde X nbsp of it along the scheme theoretic base locus B Precisely as above there is a surjection Sym V kOX OXL 1 n 0 In displaystyle operatorname Sym V otimes k mathcal O X otimes mathcal O X L 1 to bigoplus n 0 infty mathcal I n nbsp where I displaystyle mathcal I nbsp is the ideal sheaf of B and that gives rise to i X P V X displaystyle i widetilde X hookrightarrow mathbb P V times X nbsp Since X B displaystyle X B simeq nbsp an open subset of X displaystyle widetilde X nbsp there results in the map f X B P V displaystyle f X B to mathbb P V nbsp Finally when a basis of V is chosen the above discussion becomes more down to earth and that is the style used in Hartshorne Algebraic Geometry Linear system determined by a map to a projective space editThis section needs expansion You can help by adding to it August 2019 Each morphism from an algebraic variety to a projective space determines a base point free linear system on the variety because of this a base point free linear system and a map to a projective space are often used interchangeably For a closed immersion f Y X displaystyle f Y hookrightarrow X nbsp of algebraic varieties there is a pullback of a linear system d displaystyle mathfrak d nbsp on X displaystyle X nbsp to Y displaystyle Y nbsp defined as f 1 d f 1 D D d displaystyle f 1 mathfrak d f 1 D D in mathfrak d nbsp 2 page 158 O 1 on a projective variety edit A projective variety X displaystyle X nbsp embedded in Pr displaystyle mathbb P r nbsp has a natural linear system determining a map to projective space from OX 1 OX OPrOPr 1 displaystyle mathcal O X 1 mathcal O X otimes mathcal O mathbb P r mathcal O mathbb P r 1 nbsp This sends a point x X displaystyle x in X nbsp to its corresponding point x0 xr Pr displaystyle x 0 cdots x r in mathbb P r nbsp See also editBrill Noether theory Lefschetz pencil bundle of principal partsReferences edit Grothendieck Alexandre Dieudonne Jean EGA IV 21 3 a b c d e f Hartshorne R Algebraic Geometry proposition II 7 2 page 151 proposition II 7 7 page 157 page 158 exercise IV 1 7 page 298 proposition IV 5 3 page 342 Kleiman Steven L Laksov Dan 1974 Another proof of the existence of special divisors Acta Mathematica 132 163 176 doi 10 1007 BF02392112 ISSN 0001 5962 Arbarello Enrico Cornalba Maurizio Griffiths Phillip 2011 Geometry of algebraic curves Grundlehren der Mathematischen Wissenschaften Vol II with a contribution by Joseph Daniel Harris Heidelberg Springer p 3 doi 10 1007 978 1 4757 5323 3 ISBN 978 1 4419 2825 2 MR 2807457 Fulton William 1998 4 4 Linear Systems Intersection Theory Springer doi 10 1007 978 1 4612 1700 8 5 P Griffiths J Harris 1994 Principles of Algebraic Geometry Wiley Classics Library Wiley Interscience p 137 ISBN 0 471 05059 8 Hartshorne R Algebraic Geometry Springer Verlag 1977 corrected 6th printing 1993 ISBN 0 387 90244 9 Lazarsfeld R Positivity in Algebraic Geometry I Springer Verlag 2004 ISBN 3 540 22533 1 Retrieved from https en wikipedia org w index php title Linear system of divisors amp oldid 1187985806 Characteristic linear system of an algebraic family of curves, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.