fbpx
Wikipedia

Carbon print

A carbon print is a photographic print with an image consisting of pigmented gelatin, rather than of silver or other metallic particles suspended in a uniform layer of gelatin, as in typical black-and-white prints, or of chromogenic dyes, as in typical photographic color prints.

Carbon print of Alfred, Lord Tennyson by Elliott & Fry
1932 Carbro process color print by Nickolas Muray

In the original version of the printing process, carbon tissue (a temporary support sheet coated with a layer of gelatin mixed with a pigment—originally carbon black, from which the name derives) is bathed in a potassium dichromate sensitizing solution, dried, then exposed to strong ultraviolet light through a photographic negative, hardening the gelatin in proportion to the amount of light reaching it. The tissue is then developed by treatment with warm water, which dissolves the unhardened gelatin. The resulting pigment image is physically transferred to a final support surface, either directly or indirectly. In an important early 20th century variation of the process, known as carbro (carbon-bromide) printing, contact with a conventional silver bromide paper print, rather than exposure to light, was used to selectively harden the gelatin. A wide variety of colored pigments can be used instead of carbon black.

The process can produce images of very high quality which are exceptionally resistant to fading and other deterioration. It was developed in the mid-19th century in response to concerns about the fading of early types of silver-based black-and-white prints, which was already becoming apparent within a relatively few years of their introduction.

The most recent development in the process was made by the American photographer Charles Berger in 1993 with the introduction of a non-toxic sensitizer that presented none of the health and safety hazards of the toxic (now EU-restricted) dichromate sensitizer.

Carbon tissue edit

Carbon tissue, a layer of unsensitized pigmented gelatin on a thin paper support sheet,[1] was introduced by British physicist and chemist Joseph Swan[2][3] in 1864.[4] Marketing began in 1866. Initially, his ready-made tissues were sold in only three colors: black, sepia and purple-brown.[1][3] Eventually, a wide array of hues became available. Carbon tissue was a stock item in Europe and the US well into the 20th century,[1] but by the 1950s carbon printing was very rare and supplies for it became an exotic specialty item. Some companies produced small quantities of carbon tissue and transfer papers for monochrome and three-color work until around 1990.[1][3]

Overview and history of carbon printing edit

The carbon process, initially a black-and-white process using lampblack (carbon black), was invented by Alphonse Poitevin in 1855. The process was later adapted to color, through the use of pigments, by Louis Ducos du Hauron in 1868. Carbon printing remained commercially popular through the first half of the 20th century. It was replaced over time by the dye-transfer process, chromogenic, dye-bleach (or dye destruction, i.e. Cibachrome) and, now, digital printing processes. The efficiencies gained through these more modern automated processes relegated carbon printing to the commercial backwaters in the latter half of the 20th century. It is now only found in the darkrooms of the rare enthusiast and a few exotic labs.

Carbon printing is based on the fact that gelatin, when sensitized to light by a dichromate, is hardened and made insoluble in water when exposed to ultraviolet light. Because of the comparative insensitivity of the material, sunlight or another strong source of UV light is normally used to minimize the required exposure time. To make a full-color print, three negatives photographed through red, green and blue filters are printed on dichromate-sensitized sheets of pigmented gelatin (traditionally called "carbon tissue" regardless of the pigment incorporated) containing, respectively, cyan, magenta and yellow pigments. They are developed in warm water, which dissolves the unhardened gelatin, leaving a colored relief image that is thickest where it received the strongest exposure. The three images are then transferred, one at a time, onto a final support such as a heavy sheet of smooth gelatin-sized paper. Usually, the yellow image is transferred first, then the magenta image is applied on top of it, great care being taken to superimpose it in exact register, and then the cyan image is similarly applied. A fourth black pigment "key" layer is sometimes added, as in mechanical printing processes, to improve edge definition and mask any spurious color cast in the dark areas of the image, but it is not a traditional component.

The resulting finished print, whether composed of several layers and in full color or having only a single monochrome layer, exhibits a very slight bas-relief effect and a variation of texture on its surface, both distinctive characteristics of a carbon print. The process is time-consuming and labor-intensive. Each color carbon print requires three, or four, round trips in the darkroom to create the finished print. An individual, using existing pigmented sheets and separations, can prepare, print and process enough material, 60 sheets including the support, to produce about twelve 20" x 24" four-color prints in a 40-hour work week. However, this investment of time and effort can create prints of outstanding visual quality and proven archival permanence.

The carbon process can be used to produce:

  • Monochrome prints, usually black-and-white, but they may be sepia, cyan or any other preferred color.
  • Duochrome (duotone) prints, an effect many printers are familiar with, using complementary or associated colors to their best effect.
  • Trichrome prints, traditional full-color prints made by layering YMC (yellow, magenta and cyan) pigment sheets.
  • Quadrachrome prints, essentially full-color trichrome prints with an added black K (key) layer to increase density and mask any spurious color in dark areas.

Any combination of layers, in any color, is possible to achieve whatever ends the printer desires. There are two primary techniques used in carbon printing: single transfer and double transfer. This has to do with the negatives (separations) being right- or wrong-reading and the image "flopping" during the transfer process.

Because the carbon printing process uses pigments instead of dyes, it is capable of producing a far more archivally stable (permanent) print than any of the other color processes. Good examples of the color stability of pigments can be found in the paintings of the great masters, the true colors of which, in many cases, have survived all these centuries. A more contemporary example of the color stability of pigments is found in the paints used on automobiles today, which must survive intense daily exposure to very harsh lighting, under extreme conditions. The useful life of many (but not all) pigment formulations has been projected out to be several centuries and beyond (perhaps millennia, if cave paintings of Lascaux, the wall paintings in the tombs of the Valley of the Kings and the frescoes of Pompeii are relevant examples), often being limited only to the useful life of the particular support used. Additionally, the use of pigment also produces a wider color gamut than any of the other color processes, allowing for a greater range and subtlety of color reproduction.

Though carbon printing always has been, and remains, a labor-intensive, time-consuming and technologically demanding process, there are still those that prefer the high aesthetic of its remarkable beauty and longevity over all other processes.

Chronological History of Carbon (Pigment) Printing

Date Name Nationality Remarks
1798 Louis Nicolas Vauquelin French Influence of light on silver chromate
1827 Joseph Nicéphore Niépce French First permanent photograph of the image formed by a camera lens
1832 Gustav Suckow French Chromic acid salts are light sensitive, even without silver
1839 Sir John Herschel English Introduction of the word "photography", early experiments with creating prints in various colors
1839 Mungo Ponton Scottish Action of light on paper coated with potassium dichromate + washing = fixed image
1840 Edmond Becquerel French Action of light on paper coated with potassium dichromate + iodine fumes = fixed image
1852 William Henry Fox Talbot English Dichromated gelatin rendered insoluble by exposure to light
1855 Alphonse Poitevin French Invents photographic printing by dichromated pigment process
1855 James Clerk Maxwell Scottish Color photography by three-color analysis and synthesis, proposed in passing in a paper on color vision
1858 L'abbé Laborde French Principle of exposure through the base then transfer from one base to another (see Fargier)
1860 Fargier French Principle of exposure through the base then transfer from one base to another (see Laborde) but the image is reversed
1860 Blaise French Double transfer to get a non-reversed image
1861 James Clerk Maxwell Scottish Demonstration of photographic color reproduction by synthesis (additive method, three images superimposed by projection through filters)
1862 Louis Ducos du Hauron French Photographic color printing by the three-color subtractive method proposed in an unpublished paper
1863 Pouncy English Uses sensitized inks
1863 Poitevin French Modification of his process: insolubility of the pigmented gelatin then solubility by exposure through a positive film
1864 Joseph Wilson Swan English Swan process: uses rubber for the transfer
1867 Charles Cros French Unaware of work being done by Louis Ducos du Hauron (see 1862) invents similar methods for photographic color reproduction
1868 Marion French Procédé Marion: Uses an albuminated paper for the transfer
1868 Louis Ducos du Hauron French Patents the basic principles of most of the practical color photography processes subsequently developed
1869 Charles Cros French Publishes Solution générale du problème de la photographie des couleurs
1869 Louis Ducos du Hauron French Publishes Les couleurs en photographie, solution du problème
1869 Jeanrenaud French Double transfer with an opal glass
1870 Gobert French 1870-1873 printing on metal plates
1873 Marion French Mariotype
1873 Hermann Vogel German Discovers dye sensitization of silver halides, making creation of three-color separation negatives practical
1878 Louis Ducos du Hauron French Publishes improved methods of color photography and printing by the carbon process
1878 Fredéric Artigues French Charbon velours
1881 Charles Cros French Tricolor process prints presented to the Académie des Sciences (French Academy of Sciences)
1889 Artigues French Papiers charbon velours
1893 Victor Artigues French Carbon velours à tons continus de 1893 à 1910
1894 Ladeveze Rouille French Papier gomme-chrome
1899 Thomas Manly English Ozotype[5] derived from mariotype
1899 Henri Theodore Fresson French Procédé Fresson: sold in USA between 1927 and 1939 by Edward Alenias.
1900 Fresson French Papier charbon Satin then papier Arvel to be processed with chlorine
1902 Robert Krayn American N.P.G. Process: tricolor carbon process distributed in France by La Société Industrielle de Photographie
1905 Thomas Manly English Ozobrome process: instead of exposure to light, contact with a silver bromide print selectively hardens the dichromated gelatin
1913 S. Manners English Ozobrome
1919 Autotype English Carbro process based on Manly's ozobromie, Sold by Autotype in London from 1920 to 1960
1923 H.J.C. Deeks American Raylo: three color carbon
1951 Pierre Fresson French Quadrichromie Fresson
1982 Archival Color Co. American TriColor Carbon Pigment Prints/Materials developed by Charles Berger manufactured by Polaroid
1993 UltraStable Color American Ultrastable Color System; Four-Color Carbon Pigment Films developed by Charles Berger.

Artists known for carbon prints edit

See also edit

  • Laser printing, which uses carbon pigment fused with styrene binder, imaged with optical and digital technology
  • Oil print process, another process based on hardened gelatin
  • Woodburytype, a variation of the carbon process

References edit

  1. ^ a b c d "The Carbon Transfer Process".
  2. ^ Peres, Michael R. (29 May 2013). The Focal Encyclopedia of Photography. Taylor & Francis. ISBN 9781136106132. Retrieved 24 September 2013. {{cite book}}: |work= ignored (help)
  3. ^ a b c "Carbon Transfer: Contemporary Printers". Sandy King.
  4. ^ "DEFINITIONS OF PRINT PROCESSES". www.photoeye.com. Retrieved 24 September 2013.
  5. ^ Wall, E. J. (Edward John) (1899). Carbon printing : with a chapter on Mr. Thos. Manly's "ozotype" process. Getty Research Institute. London : Hazell, Watson, & Viney.

External links edit

  • Carbon. Report on the carbon process from the Getty Conservation Institute
  • Carbon process methods and materials
  • Description of the charcoal process
  • , including discussion of the carbro (carbon-bromine) process
  • Making a Carbon Transfer Print, a video showing a modern workflow
  • Diazidostilbene (DAS) Carbon transfer printing from pigment to printing

carbon, print, carbon, print, photographic, print, with, image, consisting, pigmented, gelatin, rather, than, silver, other, metallic, particles, suspended, uniform, layer, gelatin, typical, black, white, prints, chromogenic, dyes, typical, photographic, color. A carbon print is a photographic print with an image consisting of pigmented gelatin rather than of silver or other metallic particles suspended in a uniform layer of gelatin as in typical black and white prints or of chromogenic dyes as in typical photographic color prints Carbon print of Alfred Lord Tennyson by Elliott amp Fry 1932 Carbro process color print by Nickolas Muray In the original version of the printing process carbon tissue a temporary support sheet coated with a layer of gelatin mixed with a pigment originally carbon black from which the name derives is bathed in a potassium dichromate sensitizing solution dried then exposed to strong ultraviolet light through a photographic negative hardening the gelatin in proportion to the amount of light reaching it The tissue is then developed by treatment with warm water which dissolves the unhardened gelatin The resulting pigment image is physically transferred to a final support surface either directly or indirectly In an important early 20th century variation of the process known as carbro carbon bromide printing contact with a conventional silver bromide paper print rather than exposure to light was used to selectively harden the gelatin A wide variety of colored pigments can be used instead of carbon black The process can produce images of very high quality which are exceptionally resistant to fading and other deterioration It was developed in the mid 19th century in response to concerns about the fading of early types of silver based black and white prints which was already becoming apparent within a relatively few years of their introduction The most recent development in the process was made by the American photographer Charles Berger in 1993 with the introduction of a non toxic sensitizer that presented none of the health and safety hazards of the toxic now EU restricted dichromate sensitizer Contents 1 Carbon tissue 2 Overview and history of carbon printing 3 Artists known for carbon prints 4 See also 5 References 6 External linksCarbon tissue editCarbon tissue a layer of unsensitized pigmented gelatin on a thin paper support sheet 1 was introduced by British physicist and chemist Joseph Swan 2 3 in 1864 4 Marketing began in 1866 Initially his ready made tissues were sold in only three colors black sepia and purple brown 1 3 Eventually a wide array of hues became available Carbon tissue was a stock item in Europe and the US well into the 20th century 1 but by the 1950s carbon printing was very rare and supplies for it became an exotic specialty item Some companies produced small quantities of carbon tissue and transfer papers for monochrome and three color work until around 1990 1 3 Overview and history of carbon printing editThe carbon process initially a black and white process using lampblack carbon black was invented by Alphonse Poitevin in 1855 The process was later adapted to color through the use of pigments by Louis Ducos du Hauron in 1868 Carbon printing remained commercially popular through the first half of the 20th century It was replaced over time by the dye transfer process chromogenic dye bleach or dye destruction i e Cibachrome and now digital printing processes The efficiencies gained through these more modern automated processes relegated carbon printing to the commercial backwaters in the latter half of the 20th century It is now only found in the darkrooms of the rare enthusiast and a few exotic labs Carbon printing is based on the fact that gelatin when sensitized to light by a dichromate is hardened and made insoluble in water when exposed to ultraviolet light Because of the comparative insensitivity of the material sunlight or another strong source of UV light is normally used to minimize the required exposure time To make a full color print three negatives photographed through red green and blue filters are printed on dichromate sensitized sheets of pigmented gelatin traditionally called carbon tissue regardless of the pigment incorporated containing respectively cyan magenta and yellow pigments They are developed in warm water which dissolves the unhardened gelatin leaving a colored relief image that is thickest where it received the strongest exposure The three images are then transferred one at a time onto a final support such as a heavy sheet of smooth gelatin sized paper Usually the yellow image is transferred first then the magenta image is applied on top of it great care being taken to superimpose it in exact register and then the cyan image is similarly applied A fourth black pigment key layer is sometimes added as in mechanical printing processes to improve edge definition and mask any spurious color cast in the dark areas of the image but it is not a traditional component The resulting finished print whether composed of several layers and in full color or having only a single monochrome layer exhibits a very slight bas relief effect and a variation of texture on its surface both distinctive characteristics of a carbon print The process is time consuming and labor intensive Each color carbon print requires three or four round trips in the darkroom to create the finished print An individual using existing pigmented sheets and separations can prepare print and process enough material 60 sheets including the support to produce about twelve 20 x 24 four color prints in a 40 hour work week However this investment of time and effort can create prints of outstanding visual quality and proven archival permanence The carbon process can be used to produce Monochrome prints usually black and white but they may be sepia cyan or any other preferred color Duochrome duotone prints an effect many printers are familiar with using complementary or associated colors to their best effect Trichrome prints traditional full color prints made by layering YMC yellow magenta and cyan pigment sheets Quadrachrome prints essentially full color trichrome prints with an added black K key layer to increase density and mask any spurious color in dark areas Any combination of layers in any color is possible to achieve whatever ends the printer desires There are two primary techniques used in carbon printing single transfer and double transfer This has to do with the negatives separations being right or wrong reading and the image flopping during the transfer process Because the carbon printing process uses pigments instead of dyes it is capable of producing a far more archivally stable permanent print than any of the other color processes Good examples of the color stability of pigments can be found in the paintings of the great masters the true colors of which in many cases have survived all these centuries A more contemporary example of the color stability of pigments is found in the paints used on automobiles today which must survive intense daily exposure to very harsh lighting under extreme conditions The useful life of many but not all pigment formulations has been projected out to be several centuries and beyond perhaps millennia if cave paintings of Lascaux the wall paintings in the tombs of the Valley of the Kings and the frescoes of Pompeii are relevant examples often being limited only to the useful life of the particular support used Additionally the use of pigment also produces a wider color gamut than any of the other color processes allowing for a greater range and subtlety of color reproduction Though carbon printing always has been and remains a labor intensive time consuming and technologically demanding process there are still those that prefer the high aesthetic of its remarkable beauty and longevity over all other processes Chronological History of Carbon Pigment Printing Date Name Nationality Remarks 1798 Louis Nicolas Vauquelin French Influence of light on silver chromate 1827 Joseph Nicephore Niepce French First permanent photograph of the image formed by a camera lens 1832 Gustav Suckow French Chromic acid salts are light sensitive even without silver 1839 Sir John Herschel English Introduction of the word photography early experiments with creating prints in various colors 1839 Mungo Ponton Scottish Action of light on paper coated with potassium dichromate washing fixed image 1840 Edmond Becquerel French Action of light on paper coated with potassium dichromate iodine fumes fixed image 1852 William Henry Fox Talbot English Dichromated gelatin rendered insoluble by exposure to light 1855 Alphonse Poitevin French Invents photographic printing by dichromated pigment process 1855 James Clerk Maxwell Scottish Color photography by three color analysis and synthesis proposed in passing in a paper on color vision 1858 L abbe Laborde French Principle of exposure through the base then transfer from one base to another see Fargier 1860 Fargier French Principle of exposure through the base then transfer from one base to another see Laborde but the image is reversed 1860 Blaise French Double transfer to get a non reversed image 1861 James Clerk Maxwell Scottish Demonstration of photographic color reproduction by synthesis additive method three images superimposed by projection through filters 1862 Louis Ducos du Hauron French Photographic color printing by the three color subtractive method proposed in an unpublished paper 1863 Pouncy English Uses sensitized inks 1863 Poitevin French Modification of his process insolubility of the pigmented gelatin then solubility by exposure through a positive film 1864 Joseph Wilson Swan English Swan process uses rubber for the transfer 1867 Charles Cros French Unaware of work being done by Louis Ducos du Hauron see 1862 invents similar methods for photographic color reproduction 1868 Marion French Procede Marion Uses an albuminated paper for the transfer 1868 Louis Ducos du Hauron French Patents the basic principles of most of the practical color photography processes subsequently developed 1869 Charles Cros French Publishes Solution generale du probleme de la photographie des couleurs 1869 Louis Ducos du Hauron French Publishes Les couleurs en photographie solution du probleme 1869 Jeanrenaud French Double transfer with an opal glass 1870 Gobert French 1870 1873 printing on metal plates 1873 Marion French Mariotype 1873 Hermann Vogel German Discovers dye sensitization of silver halides making creation of three color separation negatives practical 1878 Louis Ducos du Hauron French Publishes improved methods of color photography and printing by the carbon process 1878 Frederic Artigues French Charbon velours 1881 Charles Cros French Tricolor process prints presented to the Academie des Sciences French Academy of Sciences 1889 Artigues French Papiers charbon velours 1893 Victor Artigues French Carbon velours a tons continus de 1893 a 1910 1894 Ladeveze Rouille French Papier gomme chrome 1899 Thomas Manly English Ozotype 5 derived from mariotype 1899 Henri Theodore Fresson French Procede Fresson sold in USA between 1927 and 1939 by Edward Alenias 1900 Fresson French Papier charbon Satin then papier Arvel to be processed with chlorine 1902 Robert Krayn American N P G Process tricolor carbon process distributed in France by La Societe Industrielle de Photographie 1905 Thomas Manly English Ozobrome process instead of exposure to light contact with a silver bromide print selectively hardens the dichromated gelatin 1913 S Manners English Ozobrome 1919 Autotype English Carbro process based on Manly s ozobromie Sold by Autotype in London from 1920 to 1960 1923 H J C Deeks American Raylo three color carbon 1951 Pierre Fresson French Quadrichromie Fresson 1982 Archival Color Co American TriColor Carbon Pigment Prints Materials developed by Charles Berger manufactured by Polaroid 1993 UltraStable Color American Ultrastable Color System Four Color Carbon Pigment Films developed by Charles Berger Artists known for carbon prints editJulia Margaret Cameron Rudolf Koppitz Nickolas Muray carbro process Rene Pauli Franck RONDOT Diazidostilbene DAS Carbon printsSee also editLaser printing which uses carbon pigment fused with styrene binder imaged with optical and digital technology Oil print process another process based on hardened gelatin Woodburytype a variation of the carbon processReferences edit a b c d The Carbon Transfer Process Peres Michael R 29 May 2013 The Focal Encyclopedia of Photography Taylor amp Francis ISBN 9781136106132 Retrieved 24 September 2013 a href Template Cite book html title Template Cite book cite book a work ignored help a b c Carbon Transfer Contemporary Printers Sandy King DEFINITIONS OF PRINT PROCESSES www photoeye com Retrieved 24 September 2013 Wall E J Edward John 1899 Carbon printing with a chapter on Mr Thos Manly s ozotype process Getty Research Institute London Hazell Watson amp Viney External links edit nbsp Wikimedia Commons has media related to Carbon print Carbon Report on the carbon process from the Getty Conservation Institute Description of the carbon process Carbon process methods and materials Description of the charcoal process Theory of the carbon process including discussion of the carbro carbon bromine process Making a Carbon Transfer Print a video showing a modern workflow Diazidostilbene DAS Carbon transfer printing from pigment to printing Retrieved from https en wikipedia org w index php title Carbon print amp oldid 1201074759, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.