fbpx
Wikipedia

BET theory

Brunauer–Emmett–Teller (BET) theory aims to explain the physical adsorption of gas molecules on a solid surface and serves as the basis for an important analysis technique for the measurement of the specific surface area of materials. The observations are very often referred to as physical adsorption or physisorption. In 1938, Stephen Brunauer, Paul Hugh Emmett, and Edward Teller presented their theory in the Journal of the American Chemical Society.[1] BET theory applies to systems of multilayer adsorption that usually utilizes a probing gas (called the adsorbate) that does not react chemically with the adsorptive (the material upon which the gas attaches to) to quantify specific surface area. Nitrogen is the most commonly employed gaseous adsorbate for probing surface(s). For this reason, standard BET analysis is most often conducted at the boiling temperature of N2 (77 K). Other probing adsorbates are also utilized, albeit less often, allowing the measurement of surface area at different temperatures and measurement scales. These include argon, carbon dioxide, and water. Specific surface area is a scale-dependent property, with no single true value of specific surface area definable, and thus quantities of specific surface area determined through BET theory may depend on the adsorbate molecule utilized and its adsorption cross section.[2]

Concept Edit

 
BET model of multilayer adsorption, that is, a random distribution of sites covered by one, two, three, etc., adsorbate molecules.

The concept of the theory is an extension of the Langmuir theory, which is a theory for monolayer molecular adsorption, to multilayer adsorption with the following hypotheses:

  1. gas molecules physically adsorb on a solid in layers infinitely;
  2. gas molecules only interact with adjacent layers; and
  3. the Langmuir theory can be applied to each layer.
  4. the enthalpy of adsorption for the first layer is constant and greater than the second (and higher).
  5. the enthalpy of adsorption for the second (and higher) layers is the same as the enthalpy of liquefaction.

The resulting BET equation is

 

where c is referred to as the BET C-constant,  is the vapor pressure of the adsorptive bulk liquid phase which would be at the temperature of the adsorbate and θ is the surface coverage, defined as:

 .

Here  is the amount of adsorbate and   is called the monolayer equivalent. The   is the entire amount that would be present as a monolayer (which is theoretically impossible for physical adsorption[citation needed]) would cover the surface with exactly one layer of adsorbate. The above equation is usually rearranged to yield the following equation for the ease of analysis:

 

where   and   are the equilibrium and the saturation pressure of adsorbates at the temperature of adsorption, respectively;   is the adsorbed gas quantity (for example, in volume units) while   is the monolayer adsorbed gas quantity.   is the BET constant,

 

where   is the heat of adsorption for the first layer, and   is that for the second and higher layers and is equal to the heat of liquefaction or heat of vaporization.

 
BET plot

Equation (1) is an adsorption isotherm and can be plotted as a straight line with   on the y-axis and   on the x-axis according to experimental results. This plot is called a BET plot. The linear relationship of this equation is maintained only in the range of  . The value of the slope   and the y-intercept   of the line are used to calculate the monolayer adsorbed gas quantity   and the BET constant  . The following equations can be used:

 
 

The BET method is widely used in materials science for the calculation of surface areas of solids by physical adsorption of gas molecules. The total surface area   and the specific surface area   are given by

 
 

where   is in units of volume which are also the units of the monolayer volume of the adsorbate gas,   is the Avogadro number,   the adsorption cross section of the adsorbate,[3]   the molar volume of the adsorbate gas, and   the mass of the solid sample or adsorbent.

Derivation Edit

The BET theory can be derived similarly to the Langmuir theory, but by considering multilayered gas molecule adsorption, where it is not required for a layer to be completed before an upper layer formation starts. Furthermore, the authors made five assumptions:[4]

  1. Adsorptions occur only on well-defined sites of the sample surface (one per molecule)
  2. The only molecular interaction considered is the following one: a molecule can act as a single adsorption site for a molecule of the upper layer.
  3. The uppermost molecule layer is in equilibrium with the gas phase, i.e. similar molecule adsorption and desorption rates.
  4. The desorption is a kinetically limited process, i.e. a heat of adsorption must be provided:
    • these phenomena are homogeneous, i.e. same heat of adsorption for a given molecule layer.
    • it is E1 for the first layer, i.e. the heat of adsorption at the solid sample surface
    • the other layers are assumed similar and can be represented as condensed species, i.e. liquid state. Hence, the heat of adsorption is EL is equal to the heat of liquefaction.
  5. At the saturation pressure, the molecule layer number tends to infinity (i.e. equivalent to the sample being surrounded by a liquid phase)

Consider a given amount of solid sample in a controlled atmosphere. Let θi be the fractional coverage of the sample surface covered by a number i of successive molecule layers. Let us assume that the adsorption rate Rads,i-1 for molecules on a layer (i-1) (i.e. formation of a layer i) is proportional to both its fractional surface θi-1 and to the pressure P, and that the desorption rate Rdes,i on a layer i is also proportional to its fractional surface θi:

 
 

where ki and ki are the kinetic constants (depending on the temperature) for the adsorption on the layer (i−1) and desorption on layer i, respectively. For the adsorptions, these constants are assumed similar whatever the surface. Assuming an Arrhenius law for desorption, the related constants can be expressed as

 

where Ei is the heat of adsorption, equal to E1 at the sample surface and to EL otherwise.

Consider some substance A. The adsorption of A onto an available surface site   produces a new site   on the first layer. In summary,

       

Extending this to higher order layers one obtains

       

and similarly

        

Denoting the activity of the number of available sites of the  th layer with   and the partial pressure of A with  , the last equilibrium can be written

 

It follows that the coverage of the first layer can be written

 

and that the coverage of the second layer can be written

 

Realising that the adsorption of A onto the second layer is equivalent to adsorption of A onto its own liquid phase,[5] the rate constant for   should be the same, which results in the recursion

 

In order to simplify some infinite summations, let   and let  . Then the  th layer coverage can written

 

if  . The coverage of any layer is defined as the relative number of available sites. An alternative definition, which leads to a set of coverage's that are numerically to those resulting from the original way of defining surface coverage, is that   denotes the relative number of sites covered by only   adsorbents.[5] Doing so it is easy to see that the total volume of adsorbed molecules can be written as the sum

 

where   is the molecular volume. Employing the fact that this sum is the first derivative of a geometric sum, the volume becomes

 

Since the total coverage of a mono-layer must be unity, the full mono-layer coverage must be

 

In order to properly make the substitution for  , the restriction   forces us to take the zeroth contribution outside the summation, resulting in

 

Lastly, defining the excess coverage as  , the excess volume relative to the volume of an adsorbed mono-layer becomes

 

where the last equality was obtained by making use of the series expansions presented above. The constant   must be interpreted as the relative binding affinity a substance A has towards a surface, relative to its own liquid. If   then the initial part of the isotherm will be reminiscent of the Langmuir isotherm which reaches a plateau at full mono-layer coverage, whereas   means the mono-layer will have a slow build-up. Another thing to note is that in order for the geometric substitutions to hold,  . The isotherm above exhibits a singularity at  . Since   one can write   which further means that   is true, where   is called the saturation pressure.

Finding the linear BET range Edit

It is still not clear on how to find the linear range of the BET plot for microporous materials in a way that reduces any subjectivity in the assessment of the monolayer capacity. A crowd-sourced study involving 61 research groups has shown that reproducibility of BET area determination from identical isotherms is, in some cases, problematic.[6] Rouquerol et al.[7] suggested a procedure that is based on two criteria:

  • C must be positive implying that any negative intercept on the BET plot indicates that one is outside the valid range of the BET equation.
  • Application of the BET equation must be limited to the range where the term V(1-P/P0) continuously increases with P/P0.

These corrections are an attempt to salvage the BET theory, which is restricted to type II isotherms. Even while using this type, use of the data itself is restricted to 0.05 to 0.35 of  , routinely discarding 70% of the data. This restriction must be modified depending upon conditions.

Limitations of BET Edit

Terrell L. Hill described BET as a theory that is "... extremely useful as a qualitative guide; but it is not quantitatively correct".[8] Although BET adsorption isotherm is still extensively used for different applications and is used for specific surface area determinations of powders whose calculation is not sensitive to the simplifications of the BET theory.[8] Both Hackerman's[9] and Sing's group[10] have highlighted the limitations of the BET method.[11] Hackerman et al. noted the potential for 10% uncertainty in the method's values,[9] with Sing's group attributed the significant variation in reported values of molecular area to the BET method's possible inaccurate assessment of monolayer capacity.[11] In subsequent studies using the BET interpretation of nitrogen and water vapor adsorption isotherms, the reported area occupied by an adsorbed water molecule on fully hydroxylated silica ranged from 0.25 to 0.44 nm².[11] Other issues with the BET include the fact that in certain cases, BET leads to anomalies such as reaching an infinite amount adsorbed at   reaching unity,[12] and in some cases, the constant C (surface binding energy) can be determined to be negative.[13]

Applications Edit

Cement and concrete Edit

The rate of curing of concrete depends on the fineness of the cement and of the components used in its manufacture, which may include fly ash, silica fume and other materials, in addition to the calcinated limestone which causes it to harden. Although the Blaine air permeability method is often preferred, due to its simplicity and low cost, the nitrogen BET method is also used.

When hydrated cement hardens, the calcium silicate hydrate (or C-S-H), which is responsible for the hardening reaction, has a large specific surface area because of its high porosity. This porosity is related to a number of important properties of the material, including the strength and permeability, which in turn affect the properties of the resulting concrete. Measurement of the specific surface area using the BET method is useful for comparing different cements. This may be performed using adsorption isotherms measured in different ways, including the adsorption of water vapour at temperatures near ambient, and adsorption of nitrogen at 77 K (the boiling point of liquid nitrogen). Different methods of measuring cement paste surface areas often give very different values, but for a single method the results are still useful for comparing different cements.

Activated carbon Edit

Activated carbon has strong affinity for many gases and has an adsorption cross section   of 0.162 nm2 for nitrogen adsorption at liquid-nitrogen temperature (77 K). BET theory can be applied to estimate the specific surface area of activated carbon from experimental data, demonstrating a large specific surface area, even around 3000 m2/g.[14] However, this surface area is largely overestimated due to enhanced adsorption in micropores,[7] and more realistic methods should be used for its estimation, such as the subtracting pore effect (SPE) method.[15]

Catalysis Edit

In the field of solid catalysis, the surface area of catalysts is an important factor in catalytic activity. Inorganic materials such as mesoporous silica and layered clay minerals have high surface areas of several hundred m2/g calculated by the BET method, indicating the possibility of application for efficient catalytic materials.

Specific surface area calculation Edit

The ISO 9277 standard for calculating the specific surface area of solids is based on the BET method.

Thermal desorption Edit

In 2023, researchers in the United States developed a method to determine BET surface areas using a thermogravimetric analyzer (TGA).[16] This method uses a TGA to heat a porous sample loaded with an adsorbate, the produced plot of sample mass vs. temperature is then mapped into a standard isotherm to which BET theory is applied as normal. Common fluids, e.g. water or toluene, can be used as adsorbates for the TGA method allowing the specific interactions of different adsorbates to be determined, as these frequently differ from the commonly used nitrogen.

See also Edit

References Edit

  1. ^ Brunauer, Stephen; Emmett, P. H.; Teller, Edward (1938). "Adsorption of Gases in Multimolecular Layers". Journal of the American Chemical Society. 60 (2): 309–319. Bibcode:1938JAChS..60..309B. doi:10.1021/ja01269a023. ISSN 0002-7863.
  2. ^ Hanaor, D. A. H.; Ghadiri, M.; Chrzanowski, W.; Gan, Y. (2014). "Scalable Surface Area Characterization by Electrokinetic Analysis of Complex Anion Adsorption" (PDF). Langmuir. 30 (50): 15143–15152. arXiv:2106.03411. doi:10.1021/la503581e. PMID 25495551. S2CID 4697498.
  3. ^ Galarneau, Anne; Mehlhorn, Dirk; Guenneau, Flavien; Coasne, Benoit; Villemot, Francois; Minoux, Delphine; Aquino, Cindy; Dath, Jean-Pierre (2018-10-31). "Specific Surface Area Determination for Microporous/Mesoporous Materials: The Case of Mesoporous FAU-Y Zeolites" (PDF). Langmuir. American Chemical Society (ACS). 34 (47): 14134–14142. doi:10.1021/acs.langmuir.8b02144. ISSN 0743-7463. PMID 30379547. S2CID 53197261.
  4. ^ Sing, Kenneth S.W. (1998). "Adsorption methods for the characterization of porous materials". Advances in Colloid and Interface Science. 76–77: 3–11. doi:10.1016/S0001-8686(98)00038-4.
  5. ^ a b Brunauer, Stephen; Emmett, P. H.; Teller, Edward (February 1938). "Adsorption of Gases in Multimolecular Layers". Journal of the American Chemical Society. 60 (2): 309–319. doi:10.1021/ja01269a023.
  6. ^ Osterrieth, Johannes W. M.; Rampersad, James; Madden, David; Rampal, Nakul; Skoric, Luka; Connolly, Bethany; Allendorf, Mark D.; Stavila, Vitalie; Snider, Jonathan L.; Ameloot, Rob; Marreiros, João (2022-05-23). "How Reproducible are Surface Areas Calculated from the BET Equation?". Advanced Materials. 34 (27): 2201502. Bibcode:2022AdM....3401502O. doi:10.1002/adma.202201502. hdl:10754/678181. ISSN 0935-9648. PMID 35603497. S2CID 236753643.
  7. ^ a b Rouquerol, J.; Llewellyn, P.; Rouquerol, F. (2007), "Is the bet equation applicable to microporous adsorbents?", Studies in Surface Science and Catalysis, Elsevier, vol. 160, pp. 49–56, doi:10.1016/s0167-2991(07)80008-5, ISBN 9780444520227
  8. ^ a b Hill, Terrell L. (1952-01-01), Frankenburg, W. G.; Komarewsky, V. I.; Rideal, E. K. (eds.), "Theory of Physical Adsorption", Advances in Catalysis, Academic Press, vol. 4, pp. 211–258, doi:10.1016/s0360-0564(08)60615-x, retrieved 2023-07-22
  9. ^ a b Makrides, A. C.; Hackerman, Norman (April 1959). "Heats of Immersion. I. The System Silica–water". The Journal of Physical Chemistry. 63 (4): 594–598. doi:10.1021/j150574a035. ISSN 0022-3654.
  10. ^ Baker, Frederick S; Sing, Kenneth S.W (June 1976). "Specificity in the adsorption of nitrogen and water on hydroxylated and dehydroxylated silicas". Journal of Colloid and Interface Science. 55 (3): 605–613. doi:10.1016/0021-9797(76)90071-0. ISSN 0021-9797.
  11. ^ a b c Narayanaswamy, Nagarajan; Ward, C. A. (2020-03-27). "Area Occupied by a Water Molecule Adsorbed on Silica at 298 K: Zeta Adsorption Isotherm Approach". The Journal of Physical Chemistry C. 124 (17): 9269–9280. doi:10.1021/acs.jpcc.9b11976. ISSN 1932-7447.
  12. ^ Saber, Sepehr; Narayanaswamy, Nagarajan; Ward, C. A.; Elliott, Janet A. W. (2023-05-28). "Experimental examination of the phase transition of water on silica at 298 K". The Journal of Chemical Physics. 158 (20). doi:10.1063/5.0145932. ISSN 0021-9606.
  13. ^ Al-Ghouti, Mohammad A.; Da'ana, Dana A. (July 2020). "Guidelines for the use and interpretation of adsorption isotherm models: A review". Journal of Hazardous Materials. 393: 122383. doi:10.1016/j.jhazmat.2020.122383. ISSN 0304-3894.
  14. ^ Nakayama, Atsuko; Suzuki, Kazuya; Enoki, Toshiaki; Koga, Kei-ichi; Endo, Morinobu; Shindo, Norifumi (1996). "Electronic and Magnetic Properties of Activated Carbon Fibers". Bull. Chem. Soc. Jpn. 69 (2): 333–339. doi:10.1246/bcsj.69.333. ISSN 0009-2673. Retrieved 2015-06-26.
  15. ^ Kaneko, K.; Ishii, C.; Ruike, M.; Kuwabara, H. (1992). "Origin of superhigh surface area and microcrystalline graphitic structures of activated carbons". Carbon. 30 (7): 1075–1088. doi:10.1016/0008-6223(92)90139-N. ISSN 0008-6223.
  16. ^ Stahlfeld, K.; Belmont, E. (2023). "BET and Kelvin Analyses by Thermogravimetric Desorption". Langmuir. 39 (25): 8814–8823. doi:10.1021/acs.langmuir.3c00854. ISSN 0743-7463.

theory, brunauer, emmett, teller, theory, aims, explain, physical, adsorption, molecules, solid, surface, serves, basis, important, analysis, technique, measurement, specific, surface, area, materials, observations, very, often, referred, physical, adsorption,. Brunauer Emmett Teller BET theory aims to explain the physical adsorption of gas molecules on a solid surface and serves as the basis for an important analysis technique for the measurement of the specific surface area of materials The observations are very often referred to as physical adsorption or physisorption In 1938 Stephen Brunauer Paul Hugh Emmett and Edward Teller presented their theory in the Journal of the American Chemical Society 1 BET theory applies to systems of multilayer adsorption that usually utilizes a probing gas called the adsorbate that does not react chemically with the adsorptive the material upon which the gas attaches to to quantify specific surface area Nitrogen is the most commonly employed gaseous adsorbate for probing surface s For this reason standard BET analysis is most often conducted at the boiling temperature of N2 77 K Other probing adsorbates are also utilized albeit less often allowing the measurement of surface area at different temperatures and measurement scales These include argon carbon dioxide and water Specific surface area is a scale dependent property with no single true value of specific surface area definable and thus quantities of specific surface area determined through BET theory may depend on the adsorbate molecule utilized and its adsorption cross section 2 Contents 1 Concept 2 Derivation 3 Finding the linear BET range 4 Limitations of BET 5 Applications 5 1 Cement and concrete 5 2 Activated carbon 5 3 Catalysis 5 4 Specific surface area calculation 5 5 Thermal desorption 6 See also 7 ReferencesConcept Edit nbsp BET model of multilayer adsorption that is a random distribution of sites covered by one two three etc adsorbate molecules The concept of the theory is an extension of the Langmuir theory which is a theory for monolayer molecular adsorption to multilayer adsorption with the following hypotheses gas molecules physically adsorb on a solid in layers infinitely gas molecules only interact with adjacent layers and the Langmuir theory can be applied to each layer the enthalpy of adsorption for the first layer is constant and greater than the second and higher the enthalpy of adsorption for the second and higher layers is the same as the enthalpy of liquefaction The resulting BET equation is8 c p 1 p p o p o p c 1 displaystyle theta frac cp 1 p p o bigl p o p c 1 bigr nbsp where c is referred to as the BET C constant p o displaystyle p o nbsp is the vapor pressure of the adsorptive bulk liquid phase which would be at the temperature of the adsorbate and 8 is the surface coverage defined as 8 n a d s n m displaystyle theta n ads n m nbsp Here n a d s displaystyle n ads nbsp is the amount of adsorbate and n m displaystyle n m nbsp is called the monolayer equivalent The n m displaystyle n m nbsp is the entire amount that would be present as a monolayer which is theoretically impossible for physical adsorption citation needed would cover the surface with exactly one layer of adsorbate The above equation is usually rearranged to yield the following equation for the ease of analysis p p 0 v 1 p p 0 c 1 v m c p p 0 1 v m c 1 displaystyle frac p p 0 v left 1 left p p 0 right right frac c 1 v mathrm m c left frac p p 0 right frac 1 v m c qquad 1 nbsp where p displaystyle p nbsp and p 0 displaystyle p 0 nbsp are the equilibrium and the saturation pressure of adsorbates at the temperature of adsorption respectively v displaystyle v nbsp is the adsorbed gas quantity for example in volume units while v m displaystyle v mathrm m nbsp is the monolayer adsorbed gas quantity c displaystyle c nbsp is the BET constant c exp E 1 E L R T 2 displaystyle c exp left frac E 1 E mathrm L RT right qquad 2 nbsp where E 1 displaystyle E 1 nbsp is the heat of adsorption for the first layer and E L displaystyle E mathrm L nbsp is that for the second and higher layers and is equal to the heat of liquefaction or heat of vaporization nbsp BET plotEquation 1 is an adsorption isotherm and can be plotted as a straight line with 1 v p 0 p 1 displaystyle 1 v p 0 p 1 nbsp on the y axis and f p p 0 displaystyle varphi p p 0 nbsp on the x axis according to experimental results This plot is called a BET plot The linear relationship of this equation is maintained only in the range of 0 05 lt p p 0 lt 0 35 displaystyle 0 05 lt p p 0 lt 0 35 nbsp The value of the slope A displaystyle A nbsp and the y intercept I displaystyle I nbsp of the line are used to calculate the monolayer adsorbed gas quantity v m displaystyle v mathrm m nbsp and the BET constant c displaystyle c nbsp The following equations can be used v m 1 A I 3 displaystyle v m frac 1 A I qquad 3 nbsp c 1 A I 4 displaystyle c 1 frac A I qquad 4 nbsp The BET method is widely used in materials science for the calculation of surface areas of solids by physical adsorption of gas molecules The total surface area S t o t a l displaystyle S mathrm total nbsp and the specific surface area S B E T displaystyle S mathrm BET nbsp are given by S t o t a l v m N s V 5 displaystyle S mathrm total frac left v mathrm m Ns right V qquad 5 nbsp S B E T S t o t a l a 6 displaystyle S mathrm BET frac S mathrm total a qquad 6 nbsp where v m displaystyle v mathrm m nbsp is in units of volume which are also the units of the monolayer volume of the adsorbate gas N displaystyle N nbsp is the Avogadro number s displaystyle s nbsp the adsorption cross section of the adsorbate 3 V displaystyle V nbsp the molar volume of the adsorbate gas and a displaystyle a nbsp the mass of the solid sample or adsorbent Derivation EditThe BET theory can be derived similarly to the Langmuir theory but by considering multilayered gas molecule adsorption where it is not required for a layer to be completed before an upper layer formation starts Furthermore the authors made five assumptions 4 Adsorptions occur only on well defined sites of the sample surface one per molecule The only molecular interaction considered is the following one a molecule can act as a single adsorption site for a molecule of the upper layer The uppermost molecule layer is in equilibrium with the gas phase i e similar molecule adsorption and desorption rates The desorption is a kinetically limited process i e a heat of adsorption must be provided these phenomena are homogeneous i e same heat of adsorption for a given molecule layer it is E1 for the first layer i e the heat of adsorption at the solid sample surface the other layers are assumed similar and can be represented as condensed species i e liquid state Hence the heat of adsorption is EL is equal to the heat of liquefaction At the saturation pressure the molecule layer number tends to infinity i e equivalent to the sample being surrounded by a liquid phase Consider a given amount of solid sample in a controlled atmosphere Let 8i be the fractional coverage of the sample surface covered by a number i of successive molecule layers Let us assume that the adsorption rate Rads i 1 for molecules on a layer i 1 i e formation of a layer i is proportional to both its fractional surface 8i 1 and to the pressure P and that the desorption rate Rdes i on a layer i is also proportional to its fractional surface 8i R a d s i 1 k i P 8 i 1 displaystyle R mathrm ads i 1 k i P Theta i 1 nbsp R d e s i k i 8 i displaystyle R mathrm des i k i Theta i nbsp where ki and k i are the kinetic constants depending on the temperature for the adsorption on the layer i 1 and desorption on layer i respectively For the adsorptions these constants are assumed similar whatever the surface Assuming an Arrhenius law for desorption the related constants can be expressed as k i exp E i R T displaystyle k i exp E i RT nbsp where Ei is the heat of adsorption equal to E1 at the sample surface and to EL otherwise Consider some substance A The adsorption of A onto an available surface site 0 displaystyle 0 nbsp produces a new site 1 displaystyle 1 nbsp on the first layer In summary A g displaystyle ce A g nbsp 0 displaystyle 0 nbsp displaystyle ce lt gt nbsp 1 displaystyle 1 nbsp Extending this to higher order layers one obtains A g displaystyle ce A g nbsp 1 displaystyle 1 nbsp displaystyle ce lt gt nbsp 2 displaystyle 2 nbsp and similarly A g displaystyle ce A g nbsp displaystyle nbsp n 1 displaystyle n 1 nbsp displaystyle ce lt gt nbsp n displaystyle n nbsp Denoting the activity of the number of available sites of the n displaystyle n nbsp th layer with 8 n displaystyle theta n nbsp and the partial pressure of A with P displaystyle P nbsp the last equilibrium can be written K n 8 n P 8 n 1 displaystyle K n frac theta n P theta n 1 nbsp It follows that the coverage of the first layer can be written 8 1 K 1 P 8 0 displaystyle theta 1 K 1 P theta 0 nbsp and that the coverage of the second layer can be written 8 2 K 2 P 8 1 K 2 P K 1 P 8 0 displaystyle theta 2 K 2 P theta 1 K 2 PK 1 P theta 0 nbsp Realising that the adsorption of A onto the second layer is equivalent to adsorption of A onto its own liquid phase 5 the rate constant for n gt 1 displaystyle n gt 1 nbsp should be the same which results in the recursion 8 n K ℓ P n 1 P K 1 8 0 displaystyle theta n K ell P n 1 PK 1 theta 0 nbsp In order to simplify some infinite summations let x K ℓ P displaystyle x K ell P nbsp and let y K 1 P displaystyle y K 1 P nbsp Then the n displaystyle n nbsp th layer coverage can written 8 n c 8 0 x n n gt 0 displaystyle theta n c theta 0 x n quad n gt 0 nbsp if c y x displaystyle c y x nbsp The coverage of any layer is defined as the relative number of available sites An alternative definition which leads to a set of coverage s that are numerically to those resulting from the original way of defining surface coverage is that 8 n displaystyle theta n nbsp denotes the relative number of sites covered by only n displaystyle n nbsp adsorbents 5 Doing so it is easy to see that the total volume of adsorbed molecules can be written as the sum V ads V m n 1 n 8 n V m c 8 0 x n 1 n x n 1 displaystyle V text ads V text m sum n 1 infty n theta n V text m c theta 0 x sum n 1 infty nx n 1 nbsp where V m displaystyle V text m nbsp is the molecular volume Employing the fact that this sum is the first derivative of a geometric sum the volume becomes V ads V m c 8 0 x 1 x 2 displaystyle V text ads V text m c theta 0 frac x 1 x 2 nbsp Since the total coverage of a mono layer must be unity the full mono layer coverage must be 1 n 1 8 n displaystyle 1 sum n 1 infty theta n nbsp In order to properly make the substitution for 8 n displaystyle theta n nbsp the restriction n gt 1 displaystyle n gt 1 nbsp forces us to take the zeroth contribution outside the summation resulting in n 1 8 n 8 0 c 8 0 x n 0 x n 8 0 c 8 0 x 1 x displaystyle sum n 1 infty theta n theta 0 c theta 0 x sum n 0 infty x n theta 0 c theta 0 frac x 1 x nbsp Lastly defining the excess coverage as V excess V ads V m displaystyle V text excess V text ads V text m nbsp the excess volume relative to the volume of an adsorbed mono layer becomes V excess n 0 n 8 n 1 n 0 n 8 n n 0 8 n c x 1 x 1 c 1 x displaystyle V text excess frac sum n 0 infty n theta n 1 frac sum n 0 infty n theta n sum n 0 infty theta n frac cx 1 x 1 c 1 x nbsp where the last equality was obtained by making use of the series expansions presented above The constant c displaystyle c nbsp must be interpreted as the relative binding affinity a substance A has towards a surface relative to its own liquid If c 1 displaystyle c geq 1 nbsp then the initial part of the isotherm will be reminiscent of the Langmuir isotherm which reaches a plateau at full mono layer coverage whereas c 1 displaystyle c leq 1 nbsp means the mono layer will have a slow build up Another thing to note is that in order for the geometric substitutions to hold x lt 1 displaystyle x lt 1 nbsp The isotherm above exhibits a singularity at x 1 displaystyle x ast 1 nbsp Since x K ℓ P displaystyle x K ell P nbsp one can write x 1 x x displaystyle x 1 x x ast nbsp which further means that x P P displaystyle x P P ast nbsp is true where P displaystyle P ast nbsp is called the saturation pressure Finding the linear BET range EditIt is still not clear on how to find the linear range of the BET plot for microporous materials in a way that reduces any subjectivity in the assessment of the monolayer capacity A crowd sourced study involving 61 research groups has shown that reproducibility of BET area determination from identical isotherms is in some cases problematic 6 Rouquerol et al 7 suggested a procedure that is based on two criteria C must be positive implying that any negative intercept on the BET plot indicates that one is outside the valid range of the BET equation Application of the BET equation must be limited to the range where the term V 1 P P0 continuously increases with P P0 These corrections are an attempt to salvage the BET theory which is restricted to type II isotherms Even while using this type use of the data itself is restricted to 0 05 to 0 35 of P P 0 displaystyle P P 0 nbsp routinely discarding 70 of the data This restriction must be modified depending upon conditions Limitations of BET EditTerrell L Hill described BET as a theory that is extremely useful as a qualitative guide but it is not quantitatively correct 8 Although BET adsorption isotherm is still extensively used for different applications and is used for specific surface area determinations of powders whose calculation is not sensitive to the simplifications of the BET theory 8 Both Hackerman s 9 and Sing s group 10 have highlighted the limitations of the BET method 11 Hackerman et al noted the potential for 10 uncertainty in the method s values 9 with Sing s group attributed the significant variation in reported values of molecular area to the BET method s possible inaccurate assessment of monolayer capacity 11 In subsequent studies using the BET interpretation of nitrogen and water vapor adsorption isotherms the reported area occupied by an adsorbed water molecule on fully hydroxylated silica ranged from 0 25 to 0 44 nm 11 Other issues with the BET include the fact that in certain cases BET leads to anomalies such as reaching an infinite amount adsorbed at P P 0 displaystyle P P 0 nbsp reaching unity 12 and in some cases the constant C surface binding energy can be determined to be negative 13 Applications EditCement and concrete Edit The rate of curing of concrete depends on the fineness of the cement and of the components used in its manufacture which may include fly ash silica fume and other materials in addition to the calcinated limestone which causes it to harden Although the Blaine air permeability method is often preferred due to its simplicity and low cost the nitrogen BET method is also used When hydrated cement hardens the calcium silicate hydrate or C S H which is responsible for the hardening reaction has a large specific surface area because of its high porosity This porosity is related to a number of important properties of the material including the strength and permeability which in turn affect the properties of the resulting concrete Measurement of the specific surface area using the BET method is useful for comparing different cements This may be performed using adsorption isotherms measured in different ways including the adsorption of water vapour at temperatures near ambient and adsorption of nitrogen at 77 K the boiling point of liquid nitrogen Different methods of measuring cement paste surface areas often give very different values but for a single method the results are still useful for comparing different cements Activated carbon Edit Activated carbon has strong affinity for many gases and has an adsorption cross section s displaystyle s nbsp of 0 162 nm2 for nitrogen adsorption at liquid nitrogen temperature 77 K BET theory can be applied to estimate the specific surface area of activated carbon from experimental data demonstrating a large specific surface area even around 3000 m2 g 14 However this surface area is largely overestimated due to enhanced adsorption in micropores 7 and more realistic methods should be used for its estimation such as the subtracting pore effect SPE method 15 Catalysis Edit In the field of solid catalysis the surface area of catalysts is an important factor in catalytic activity Inorganic materials such as mesoporous silica and layered clay minerals have high surface areas of several hundred m2 g calculated by the BET method indicating the possibility of application for efficient catalytic materials Specific surface area calculation Edit The ISO 9277 standard for calculating the specific surface area of solids is based on the BET method Thermal desorption Edit In 2023 researchers in the United States developed a method to determine BET surface areas using a thermogravimetric analyzer TGA 16 This method uses a TGA to heat a porous sample loaded with an adsorbate the produced plot of sample mass vs temperature is then mapped into a standard isotherm to which BET theory is applied as normal Common fluids e g water or toluene can be used as adsorbates for the TGA method allowing the specific interactions of different adsorbates to be determined as these frequently differ from the commonly used nitrogen See also EditAdsorption Capillary condensation Langmuir adsorption model Mercury intrusion porosimetry Physisorption Surface tensionReferences Edit Brunauer Stephen Emmett P H Teller Edward 1938 Adsorption of Gases in Multimolecular Layers Journal of the American Chemical Society 60 2 309 319 Bibcode 1938JAChS 60 309B doi 10 1021 ja01269a023 ISSN 0002 7863 Hanaor D A H Ghadiri M Chrzanowski W Gan Y 2014 Scalable Surface Area Characterization by Electrokinetic Analysis of Complex Anion Adsorption PDF Langmuir 30 50 15143 15152 arXiv 2106 03411 doi 10 1021 la503581e PMID 25495551 S2CID 4697498 Galarneau Anne Mehlhorn Dirk Guenneau Flavien Coasne Benoit Villemot Francois Minoux Delphine Aquino Cindy Dath Jean Pierre 2018 10 31 Specific Surface Area Determination for Microporous Mesoporous Materials The Case of Mesoporous FAU Y Zeolites PDF Langmuir American Chemical Society ACS 34 47 14134 14142 doi 10 1021 acs langmuir 8b02144 ISSN 0743 7463 PMID 30379547 S2CID 53197261 Sing Kenneth S W 1998 Adsorption methods for the characterization of porous materials Advances in Colloid and Interface Science 76 77 3 11 doi 10 1016 S0001 8686 98 00038 4 a b Brunauer Stephen Emmett P H Teller Edward February 1938 Adsorption of Gases in Multimolecular Layers Journal of the American Chemical Society 60 2 309 319 doi 10 1021 ja01269a023 Osterrieth Johannes W M Rampersad James Madden David Rampal Nakul Skoric Luka Connolly Bethany Allendorf Mark D Stavila Vitalie Snider Jonathan L Ameloot Rob Marreiros Joao 2022 05 23 How Reproducible are Surface Areas Calculated from the BET Equation Advanced Materials 34 27 2201502 Bibcode 2022AdM 3401502O doi 10 1002 adma 202201502 hdl 10754 678181 ISSN 0935 9648 PMID 35603497 S2CID 236753643 a b Rouquerol J Llewellyn P Rouquerol F 2007 Is the bet equation applicable to microporous adsorbents Studies in Surface Science and Catalysis Elsevier vol 160 pp 49 56 doi 10 1016 s0167 2991 07 80008 5 ISBN 9780444520227 a b Hill Terrell L 1952 01 01 Frankenburg W G Komarewsky V I Rideal E K eds Theory of Physical Adsorption Advances in Catalysis Academic Press vol 4 pp 211 258 doi 10 1016 s0360 0564 08 60615 x retrieved 2023 07 22 a b Makrides A C Hackerman Norman April 1959 Heats of Immersion I The System Silica water The Journal of Physical Chemistry 63 4 594 598 doi 10 1021 j150574a035 ISSN 0022 3654 Baker Frederick S Sing Kenneth S W June 1976 Specificity in the adsorption of nitrogen and water on hydroxylated and dehydroxylated silicas Journal of Colloid and Interface Science 55 3 605 613 doi 10 1016 0021 9797 76 90071 0 ISSN 0021 9797 a b c Narayanaswamy Nagarajan Ward C A 2020 03 27 Area Occupied by a Water Molecule Adsorbed on Silica at 298 K Zeta Adsorption Isotherm Approach The Journal of Physical Chemistry C 124 17 9269 9280 doi 10 1021 acs jpcc 9b11976 ISSN 1932 7447 Saber Sepehr Narayanaswamy Nagarajan Ward C A Elliott Janet A W 2023 05 28 Experimental examination of the phase transition of water on silica at 298 K The Journal of Chemical Physics 158 20 doi 10 1063 5 0145932 ISSN 0021 9606 Al Ghouti Mohammad A Da ana Dana A July 2020 Guidelines for the use and interpretation of adsorption isotherm models A review Journal of Hazardous Materials 393 122383 doi 10 1016 j jhazmat 2020 122383 ISSN 0304 3894 Nakayama Atsuko Suzuki Kazuya Enoki Toshiaki Koga Kei ichi Endo Morinobu Shindo Norifumi 1996 Electronic and Magnetic Properties of Activated Carbon Fibers Bull Chem Soc Jpn 69 2 333 339 doi 10 1246 bcsj 69 333 ISSN 0009 2673 Retrieved 2015 06 26 Kaneko K Ishii C Ruike M Kuwabara H 1992 Origin of superhigh surface area and microcrystalline graphitic structures of activated carbons Carbon 30 7 1075 1088 doi 10 1016 0008 6223 92 90139 N ISSN 0008 6223 Stahlfeld K Belmont E 2023 BET and Kelvin Analyses by Thermogravimetric Desorption Langmuir 39 25 8814 8823 doi 10 1021 acs langmuir 3c00854 ISSN 0743 7463 Retrieved from https en wikipedia org w index php title BET theory amp oldid 1181739801, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.