fbpx
Wikipedia

UK railway signalling

The railway signalling system used across the majority of the United Kingdom rail network uses lineside signals to control the movement and speed of trains.

Network Rail two-aspect colour-light railway signal set at danger

The modern-day system mostly uses two, three, and four aspect colour-light signals using track circuit – or axle counter – block signalling.[1][2] It is a development of the original absolute block signalling that is still being used on many secondary lines. The use of lineside signals in Britain is restricted to railways with a maximum speed limit of up to 125 miles per hour (201 km/h). This is the maximum speed at which the train can travel safely using line-side signalling; if the train runs any faster, it will not be possible for the train driver to safely read colour-light signalling. Trains operating at speeds faster than 125 mph (for example on High Speed 1) use an in-cab signalling system that automatically determines and calculates speed restrictions.

Early days edit

 
A British Upper Quadrant semaphore signal

In the days of the first British railways, "policemen" were employed by every railway company. Their jobs were many and varied, but one of their key roles was the giving of hand signals to inform engine drivers as to the state of the line ahead.[3] They had no means of communication with their colleagues along the line, and trains were only protected by a time interval; after a train had passed him, a policeman would stop any following train if it arrived within (say) 5 minutes; for any between 5 and 10 minutes after, they would show a caution signal, and after 10 minutes, the line was assumed to be clear.[3] Therefore, if a train failed within a section (as was very common in the early days), the policeman controlling entry to the section would not know, and could easily give a 'clear' signal to a following train when the section was not in fact clear.[3] The number of collisions which resulted from this led to the gradual introduction of the absolute block principle; all systems of working other than this (including time-interval and permissive block) were outlawed on passenger lines in 1889, and all passenger lines were suitably equipped by 1895.[3]

As train speeds increased, it became increasingly difficult for enginemen to see hand signals given by the policemen, so the railways provided various types of fixed signals to do the job, operated by the policemen, or signalmen as they soon became known (it is due to this that British railway slang still names signalmen as "Bobbies").[4] Many types were devised, but the most successful was the semaphore, introduced in 1841 and soon becoming widespread, although some other types did linger on until the 1890s.[3]

Running signals edit

The terms "on" and "off" are used in describing British railway signals. When describing an older semaphore, "on" refers to a signal arm in the horizontal position, and "off" means a signal raised upwards or lowered downwards from pivot point (at up to 60°). With regard to newer colour-light signals, "on" is synonymous with the most restrictive aspect, while all other aspects are considered to be "off". A way to remember this is to refer to the state of the red light, or yellow light if the signal is a distant and incapable of displaying a red aspect. If it is lit, the signal is "on", and if the red light is unlit, the signal is "off".

Semaphore signals edit

The traditional British signal is the semaphore, comprising a mechanical arm that rises or drops to indicate 'clear' (termed an "upper-quadrant" or "lower-quadrant" signal, respectively). Both types are fail-safe in the event of breakage of the operating pull-wire but lower-quadrant signals require a heavy counterweight with push-pull rod between counterweight and arm linkage (generally assisted by the "spectacle" that carries the coloured lenses for use at night) to do that, while upper-quadrant signals fall back to "danger" under the weight of the arm.

During the 1870s, almost all the British railway companies standardised on the use of semaphore signals, which were then invariably of the lower quadrant type.[5] From the 1920s onwards, upper quadrant semaphores almost totally supplanted lower quadrant signals in Great Britain, except on former GWR lines and their succession to BR(WR) and latterly Network Rail Western Zone.[6]

There are two main types of semaphore; stop and distant. The stop signal consists of a red, square-ended arm, with a vertical white stripe typically 9-12 inches (230–300 mm) from the end, and advises the driver whether the line immediately ahead is clear or not. A stop signal must not be passed in the horizontal "on" (danger) position, except where specially authorised by the signaller's instruction. By night, it shows a red light when "on" and a green light when "off" (clear). The green light is usually produced through the use of a blue spectacle lens, which produces green when lit from behind by the yellowish flame from a paraffin lamp.

The other type is the distant signal, which has a yellow arm with a 'V' ("fishtail") notch cut out of the end and a black chevron typically 9-12 inches (230–300 mm) from the end. Its purpose is to advise the driver of the state of the following stop signal(s); it may be passed in the "on" position, but the driver must slow their train to be able to stop at the next stop signal. When "off", a distant signal tells the driver that all the following stop signals of the signal box are also "off", and when "on" tells the driver that one or more of these signals is likely to be at danger. By night, it shows a yellow light when "on" and a green light when "off". On many branch lines and short block sections, a distant signal was often fixed at 'Caution', standalone or mounted below a Stop semaphore, and so exhibited only a yellow light at night.

Where a signal consists of a combination of a stop and distant arms a mechanism is included to prevent the distant arm clearing while the stop arm is at ‘danger’.

Current British practice mandates that semaphore signals, both upper and lower quadrant types, are inclined at an angle of 45 degrees from horizontal to display an "off" indication.[7]

Colour light signals edit

 
Clearing sequence from red to green of a 4 aspect colour light signal

In total, colour-light signals in the UK display seven aspects. These are:

  • Green – Clear. The train may proceed subject to any speed restrictions applying to the section of line or to the train itself. (See also Flashing Green below.)
  • Double yellow – Preliminary caution. The next signal is displaying a single yellow aspect.
  • Flashing double yellow - indicates that the next signal is showing flashing yellow.
  •  
    A caution signal at ME 130 at Beaconsfield Station
    Single yellow – Caution. The driver must prepare to stop the train at the next signal.
  • Flashing single yellow - warns that a diverging route is set. The next signal will be a steady single yellow with a junction indicator.
  • Red – Danger/Stop.

Additionally, on the 140 miles per hour (230 km/h) trial section of line between Peterborough and York:

  • Flashing Green - the train may proceed at line speed. Where this aspect is in use, the steady green aspect means that the next signal shows double yellow.

The green aspect and the four yellow aspects are known as 'proceed aspects', as they allow the train to pass the signal; the red aspect requires the train to stop.

Two-aspect systems use red and green only. Three-aspect systems include yellow. Four-aspect signalling, which also includes double yellow, is mostly used on busy routes to allow shorter headways, and on fast routes to provide longer braking distances.

Flashing yellow aspects edit

 
Diverging route signalling - the driver must slow down and be prepared to stop at the red signal.

A flashing single or double yellow aspect indicates that a train is to take a diverging route ahead with a lower line speed than the main route. A flashing double yellow (only used in 4-aspect signalling) means that the next signal is showing flashing single yellow. A flashing single yellow means that the next signal at the junction is showing (steady) single yellow with an indication for a diverging route, and the signal beyond the junction is at danger (red).[8] This sequence of increasingly restrictive aspects forces the driver to slow the train down in preparation for stopping at the red signal, and this ensures that the train crosses the junction at the appropriate speed. As the train nears the junction, the red signal beyond may 'step up' to a less restrictive aspect depending on the state of the line ahead.

The two yellows in a flashing double-yellow flash in unison rather than alternately, but the flashing double-yellow and single-yellows are not synchronised.

Flashing yellow signalling contains an additional safety vital relay typically referred to as Flashing Lamp Proving Relay (FECR) – this changes over the supply for the yellow signal transformers at each signal where flashing aspects are provided from a steady 110Va.c. to a "flashing" supply switched on and off at about 1.2 Hz or 70–72 c.p.m., once the junction points have been set, locked and detected correctly for the lower–speed divergence.

This supply has to be specially provided, either from the power–box or control centre, or by a specially designed signal control module in more modern LED installations. The increased complexity in providing flashing aspects prior to the introduction of solid state interlocking resulted in more stringent criteria for the use of flashing aspects in earlier installations.

Failures edit

A failure of the changeover relay to switch on the flashing indication to the double-yellow aspect would not be a problem as it is considered that a steady double-yellow followed by a flashing single-yellow aspect sequence is acceptable.

However, safety circuitry is connected to the single-yellow flashing supply to ensure that a failure of the single-yellow to change over to the flashing supply would abort the "approach release from yellow" sequence and re-impose the normal "approach control from red" sequence as failure of the single yellow to flash following a flashing double-yellow is considered potentially very dangerous.[citation needed]

Lens placement and alignment edit

 
Use of LEDs means that four aspect signals can be achieved with only two apertures. This is similar to how "searchlight" type signals work.

The design considerations determining the familiar arrangement of road signals, with red at the top, do not apply to the railway. In particular, there is no risk that a signal will be masked by a tall vehicle in front of the driver. Furthermore, to position the red aspect at the lowest position may reduce risk of obscuring of that lens by heavy snow or ice. There are some standard designs but local conditions and geography, such as tunnels, may require variations.

On pole- and gantry-mounted railway signals the most restrictive aspect is usually the lowest of the principal aspects. This places the most restrictive aspect nearest to the driver's eyeline and also reduces the possibility of the lens becoming obscured by snow building up on the lens hood of an aspect below. Similarly, on ground-mounted signals the most restrictive aspect is positioned as the highest of the principal aspects; this again places the most restrictive aspect nearest to the driver's eyeline and reduces the possibility of obscuration through snow build up.

In two-aspect signals the green aspect is typically the uppermost and the red aspect the lowest. In three-aspect signals the order, from top to bottom, is typically green-yellow-red. In four-aspect signals the order is typically yellow-green-yellow-red. The top yellow is only used in the display of the double yellow aspect and the lower yellow is used for the display of both the double yellow and single yellow aspects.

In the past use was made of searchlight signals. These have a single lamp in front of which is placed either a red, yellow, or green filter to show the respective aspect. The filter assembly is moved by an electro-magnet. For a double-yellow aspect a second lamp is fitted, illuminated only when required. A few traditional searchlight signals (i.e. with moving filter glasses inside) remain in use in the Clacton area. The concept had a renaissance in the 2000s with the advent of LEDs which allow the same aperture to be used to display multiple colours. Similar to the earlier searchlight signals, these LED signals use one aperture to display red, yellow, and green aspects, and a second aperture to display the top yellow of a double yellow where required in four-aspect signalling areas.[9]

When junction indicators are fitted, they are typically placed above the principal aspects of a signal.

Signal alignment is generally aimed towards a distance 200 yards (183 metres) in rear of the signal (that is, in the direction behind the driver observing it) and at a height of 2.5 to 3 m above the left hand rail. Ground mounted signals are rarely so critical for alignment (an advantage of ground mounting) and are often used in tunnels, where the relative luminosity of the aspects is much higher.

Unusual colour light aspects edit

 
Double green aspect on the London Underground.
  • Flashing green – flashing green aspects are employed on the East Coast Main Line north of Peterborough. They were installed for 140 mph (225 km/h) running in connection with the testing of the new InterCity 225 electric trains, with a steady green limiting test trains to the normal speed limit of 125 mph (200 km/h). They no longer have official meaning, but remain in place and there are a couple of locations where the presence or absence of flashing provides useful information to drivers.
  • Splitting distants – at some locations approaching a junction two heads are placed side by side. When this signal or the junction signal is at danger, one head is dark and the other shows red or single yellow. When the junction signal is not at danger, both heads show an aspect: the one for the route set ahead of the junction (left or right) shows the correct aspect while the other shows single yellow (or double yellow at an "outer splitting distant").
  • Green over yellow, or green over green – the Liverpool Loop Line and London Underground use separate red/green "stop" and yellow/green "repeater" signals. If a repeater signal is at the same location as a stop signal, it is placed underneath it and lit only when the stop signal is green. Thus the order of the heads is (from top to bottom) green, red, green, yellow, and aspects are red, green over yellow, and green over green.
  • Yellow over green – this was used in the experimental "speed signalling" at Mirfield to provide an additional caution. It meant that the next signal was showing double yellow. It was discontinued in 1970.

Approach control edit

At certain locations such as the final signal on approach to a terminus station or at a diverging route requiring a large speed reduction, approach release may be used. The driver will be "checked down" with a normal signalling sequence (green, double yellow, yellow for a four-aspect area) and the red signal clears when it is proven that the approaching train must have slowed to an appropriate speed for the conditions ahead. Typically for low speed junctions (e.g. 25 mph (40 km/h) crossover on a 90 mph (140 km/h) line), the train will be brought down to nearly standing at the signal before it clears. Approach control is achieved by maintaining the signal at danger until the approach track circuit has been occupied for a specified period of time. After the track circuit has been occupied for the specified period of time, the signal is allowed to "step-up" to the highest available aspect and display the junction indicator where applicable. The length of time required varies on the design of the installation.

Where a junction indicator is used an additional safety precaution ensures that failure of the indicator does not cause an irregular or mutilated display to appear. This can be observed in practice – at Bescot Stadium northbound the signal, when cleared for the divergence for Walsall-bound trains, shows the junction-indicator with a red aspect for 2–3 seconds before the main aspect clears – this is whilst the interlocking proves sufficient elements of the junction-indicator are lit before clearing the main aspect. With route relay interlocking the proving circuitry for the junction indicator is housed locally. With a solid state or computerised signalling this proof has to pass to the main interlocking, hence the additional delay in proving that the junction indicator is lit prior to clearing the main signal.

Delayed Yellow Operation edit

In the Absolute Block Signalling System, the signalling regulations provide for trains to be signalled into a section of line where the designated "overlap" past the signal is not clear – the signaller keeps the signal concerned at danger until the train has come to a stand at it, and then the driver must be warned verbally by the signaller that the line is not clear the whole distance to the next signal, then once the signaller is satisfied the driver has understood the warning, they will typically pull off the signal very slowly – the driver understands from this that they are being accepted into the occupied length of line under "Warning" Regulation 4.

In colour light power box operated areas, the "home" signal where "warning" arrangements are in force has a time release similar to approach control from red but the control is more stringent – the signal only clears when the speed of the train is detected to be less than 10 mph and only clearance to single yellow is allowed – this is called delayed yellow operation, and is often found at the approach to large stations where two trains may use one platform.

Subsidiary signals edit

Subsidiary signals are those which usually control only shunting moves, as opposed to train movements. Under this category come permissive signals and shunting signals.

Semaphore subsidiary signals edit

Permissive signals edit

 
A British lower-quadrant semaphore stop signal with subsidiary arm below

Although British railway operation is based on the block principle whereby only one train is allowed in a signal section, there are situations when another train must enter the section, and permissive signals are used to control that movement. There are three types of permissive semaphore: calling-on, shunt-ahead, and warning signals. Today, all three look broadly the same; they are shaped like a normal semaphore stop signal, though only about two-thirds of the size, and are painted red with a white horizontal band running centrally along them. When "on", they show a small red or white light, and when "off", they display a small green light and an illuminated 'C', 'S' or 'W', depending on their function.

Modern-day colour-light permissive signals consist of two white lights at 45°, normally unlit. When lit, with the main aspect showing red, they instruct the driver to proceed but be prepared to stop short of any obstruction. When unlit, the driver obeys the main signal aspect. They can therefore function either as calling-on or shunt-ahead signals, depending on their location (the Warning Arrangement in colour-light areas, uses the main aspect in a similar fashion to approach release junction signalling, in this case it is called a Delayed Yellow ).

Calling-on signal

The calling-on signal is by far the most common of the three types of subsidiary signal. It is mounted under the stop signal governing entry to (usually) a platform and, when pulled off, allows the driver to proceed cautiously for as far as the line is clear (or to the next stop signal). This can allow three basic moves to take place;

  1. A second train to run into and exchange passengers at an already partly occupied platform;
  2. Additional vehicles to be attached to the rear of a standing train;
  3. A locomotive to run into a platform occupied by coaches to be attached to them.
Shunt-ahead signal

The shunt-ahead signal is normally mounted under the signal governing entry to the section ahead, and, as its name implies, allows a train to enter the section and clear a set of points in order to carry out a shunting move.

Warning signal

The warning signal is the most unusual of the three types of British permissive signal. It is, like the shunt-ahead, placed under the signal governing entry to the section ahead, but its function is very different. For a signaller to accept a train, both their block section and the line for a quarter mile inside their outer home signal must usually be clear; the quarter mile is a precaution in case the driver fails to stop in time for the outer home signal. However, it is possible to accept a train under the "Warning Arrangement" if the block section, but not the quarter-mile overlap, is clear. As its name implies, the signaller must stop and caution the driver of the train concerned, and the warning signal simply replaces the signaller's caution where this operation is frequent. Because there is no margin for braking error, the warning arrangement cannot usually be applied to passenger trains: its commonest use is to allow a goods train to run into a section to shunt a siding in the middle of that section, while a train is still occupying the station ahead.

Position light signals edit

Position light signals allow a train to move into a section under caution, the line ahead may be occupied so the driver must drive at a speed that enables them to stop short of any obstruction. Modern position lights consist of three lenses in a triangular formation.

Associated position light[10] signals (APLS) are attached to a main aspect signal and are only illuminated when a shunting movement is permitted. When the main signal aspect is red, the position light displays two white lights at an angle of 45° indicating that the driver may pass the signal with caution. When not cleared these signals are unlit, and the train driver obeys the main aspect signal.

Ground position light[10] signals (GPLS), are always illuminated and are located either near the ground or on a post with no corresponding main signal. They can display the following aspects:

  • Either two red lights or one white light and one red light in a horizontal arrangement, meaning 'Stop'.
  • Two white lights at a 45° angle, meaning 'Proceed'. The driver may pass this signal with caution and a speed that allows the train to stop short of any obstruction.

Shunt ahead[10] signals are fitted with either two yellow lights, or one white and one yellow light. They are usually found at the exits of marshaling yards and sidings, and can be passed at danger for a movement in the direction for which the signal cannot be cleared (e.g. into a headshunt rather than onto the main line). This arrangement removes the requirement for the signal to be cleared every time a shunt is to take place within the sidings without fouling the main running lines. When cleared they display two white lights at 45-degrees and permit movements onto the main line.

Limit of Shunt[11] A limit of shunt signal. consists of two permanently lit red lights in a horizontal arrangement, meaning 'Stop'. No train is allowed to pass this signal as the direction will be against the normal direction of travel. A limit of shunt signal is permanently lit and cannot display any other aspect; there is no lens fitted in the proceed position on these signals.

Semaphore and Disc Shunting Signals edit

 
Disc shunting signal

The mechanical equivalents of these shunting signals are found as miniature semaphores (the arms are the same size as those of permissive signals) and disc varieties (the disc is about 12 inches/30 cm diameter). The small-arm semaphores are painted in the same way as a full-size stop signal, while the discs are painted white with a red horizontal band. A small-arm semaphore shows "clear" in the same way as a full-size stop signal, while a disc rotates through 45 degrees or so when pulled off so that the red band is angled. Both display small red or green lights by night.

There are also semaphore and disc equivalents of the yellow light shunting signals; the small-arm semaphores being painted yellow with a black stripe and the discs either black or white with a yellow stripe; by night, they show small yellow lights when "on" and small green lights when "off".

Finally, instead of fixed position light signals, the Limit of Shunt may also be signalled by a simple white floodlit board on which the words "Limit of Shunt" are written in red.

Junction signals edit

British railway signalling is unusual in that it uses route signalling rather than the speed signalling used by most railways in continental Europe or North America. A driver is informed of which route they will take at a junction, rather than the speed at which they should travel through it.

Semaphore junction signals edit

 
Splitting signals

In semaphore areas, junctions are signalled using a series of between 2 and 5 stop signal arms on one bracket or gantry, known as splitting signals. Each arm (usually) has its own post ("doll") on the bracket, and each arm applies to one possible route. The relative heights of the posts usually convey some information about the lines to which they apply, although there is no definite standard. In some cases, the tallest post applies to the highest-speed route; in others, it applies to what the railway considered the most important route. Traditionally, splitting distant signals would be provided – a series of side-by-side distant signals telling the driver which post on the following stop signal was off; but practice since the 1920s has erred towards providing just one distant which is locked at caution if a large speed reduction is necessary. Drivers of trains must know which signal arm applies to which route, and the speed limit on that route; accidents have resulted from drivers either mis-reading splitting signals or forgetting speed restrictions, and consequently approaching junctions too fast.

Where there is a large number of possible routes, splitting signals are unsuitable because they could easily be confused, and route indicators are used instead. These consist of a black background, mounted under a single stop signal, on which is superimposed a white letter(s), number(s) or combination of the two, to make a code indicating the route to be taken. For example, if the possible routes were to Cambridge and to Norwich, a Norwich-bound train might be shown 'N' and a Cambridge-bound train 'C'. The route code is only shown when the signal is off. In semaphore areas, route indicators may be mechanical, with boards that slide into view to display the code; or electric "theatre-type", with a light projected through a suitably-printed screen.

Colour-light junction signals edit

The colour-light equivalent of a splitting signal is the junction indicator, colloquially known as a "lunar indicator", "feather", or "horn" in Scotland. Mounted above a colour-light signal, they consist of a row of white lights (originally a single, long, u-shaped fluorescent tube in an open-fronted case), nowadays five but traditionally three, angled to the left or right depending on the direction of the divergence.[12][13] When the highest-speed route is set, the indicator is not illuminated (unless all routes are of a similar speed, in which case there is an indication for each route). When a diverging route is set, the respective junction indicator is illuminated. These can be used where there is a maximum of six routes as well as the 'straight' route, and where a maximum of three routes are to one side of the 'straight' route. Two junction indicators in opposite directions on the same signal are colloquially known as "bunny ears".

Where junction indicators cannot be used, route indicators are also used in colour-light areas. They may take the form of a dot-matrix of white lamps, or, in more recent installations, fibre-optic displays driven from a single lamp to display the route code. At certain locations, no route indication is given for the highest-speed route. As with semaphore route indicators, they are usually restricted to areas where all routes are at low speed, often on the approach or departure from large stations.

In areas where speeds are lower and there are a number of routes which can be taken, alphanumeric (also called theatre-style) route indicators are used to display a number or a letter (e.g. a platform number or line designation) to denote the route the train is to take. They may be located above or beside the relevant signal. When a route is set and the signal is cleared, the relevant letter or number is shown. On shunting signals, where speeds are much lower, a miniature version of the alphanumeric route indicator is used.

When a route is set at a junction that involves the train taking a diverging route that must be passed at less than the mainline speed, a system known as approach release is used. There are a number of different types of approach release that are used on British railways but the most often used is approach release from red. This system has the signal before the diverging junction held at red until the train approaches it, whereupon it changes to a less restrictive aspect with the appropriate direction feather of five white lights. This is required so that the signals approaching show the correct caution aspects, slowing the train down for the junction. While the junction signal is held at red, the preceding signal will be displaying caution (yellow), and the one before that will display preliminary caution (double yellow) if it is a 4-aspect signal. This system allows for a gradual decrease in speed until a safe speed is reached for the train to move through the junction.

Another common system is approach release from yellow with flashing aspects in rear. It is essentially similar to approach release from red, except that the junction signal is released from yellow and the signals in rear will flash to warn the driver that the train will be taking a diverging route ahead. Where the turnout speed is the same as the mainline speed, approach release is not necessary.

Speed indicators edit

Speed indicators are displayed along a route to ensure a train does not go faster than the maximum permitted speed.

Permissible speed indicators edit

In the UK, every section of railway line has a maximum speed, known as the Permissible speed.[14] Table A of the Network Rail Sectional Appendix provides a list of these. Where there is a change in permissible speed on a line, a permissible speed indicator sign will show the new speed. Train crew are expected to know every permissible speed for all the routes they work over as part of their Route knowledge. When the speed limit increases, the rear end of the train passing must completely clear the speed limit sign before the speed limit can take effect. This minimises the risk of derailment.

Permissible speed indicator edit

 
Permissible Speed Indicator

Permissible speed indicator. This example is displaying a maximum permissible speed of 125 mph (201 km/h). If the speed figure is on a yellow disc, it is an "enhanced permissible speed" that only applies to certain trains that are specifically engineered to run at this speed safely, such as tilting trains. If the speed figure is in white numerals on a black disc, it is in kilometres per hour instead of miles per hour.

Differential permissible speed indicator edit

 
Differential permissible speed indicator

The number below the line always shows a higher speed and applies to passenger trains, parcel and postal trains and light locomotives, while the top number applies to all other trains.[15][16] This example therefore is displaying a maximum permissible speed of 70 mph (110 km/h) for passenger trains, parcel and postal trains and light locomotives, in addition to a maximum permissible speed of 40 mph (64 km/h) for all other trains.

Diverging permissible speed indicator edit

 
Diverging permissible speed indicator

This example is displaying a maximum permissible speed of 40 mph (64 km/h) only for the diverging route to the left. Unless otherwise indicated with another sign, this does not apply to the current route.

Warning indicator edit

 
The original 'Morpeth Board' from 1971-1986.
 
Permissible speed warning indicator for 50 mph

Warning indicators[17] are provided whenever there is a reduction in permissible speed of a third or more,[17] and are placed at the service braking distance from the start of the lower speed.[18]

The original version was introduced in 1971, following the 1969 derailment at Morpeth Curve in Morpeth, Northumberland.[19] The original version, consisting of a black circle with a yellow outer ring and numbers, illuminated at night by a floodlight. This design was replaced in 1986 by the current design.[19][20] However, the original design did carry on into the mid-2000s.[21] Where a speed restriction reduced the permissible speed by one-third or more, when a speed limit is above 50 miles per hour (80 km/h), an audible warning to the train driver via an AWS magnet must be provided.[18] They are colloquially known as 'Morpeth boards', owing to their connection to the Morpeth Curve.[19][18]

Diverging warning indicator edit

 
Permissible speed warning indicator for 50 mph, with a directional arrow

These indicators warn the driver of a lower speed limit on a route diverging ahead. This example is displaying a maximum permissible speed of 75 mph (121 km/h) on the left diverging route. These warnings are provided whenever there is a reduction of permissible speed of a third or more, and, again, are placed at the service braking distance from the start of the lower speed.

Speed restrictions edit

Temporary speed restriction edit

When it is necessary to carry out planned maintenance or repair work on a line, a temporary speed restriction (TSR) may be installed at a particular location.[22] Train crew are notified of this in the Network Rail issued Weekly Operating Notice, which they are required to read before they book on duty.[23] The current yellow-green reflective sign designs came into use in the mid-1990s, replacing battery powered electric lights that displayed a pair of flashing white lights and an illuminated speed indicator on the warning sign.[24][25]

 
TSR warning board

At the service braking distance before the speed restriction, a temporary AWS magnet is installed between the running rails, followed by a yellow speed warning board.

 
 
TSR 'Speed indicator' (Left) and a 'Termination indicator' (Right).

At the commencement of the speed restriction there is a yellow speed board, and at the end is a yellow termination board. The train cannot accelerate to the maximum permissible speed of the line until the last vehicle has passed the 'T' indicator, unless a second 'A' board is mounted above the termination board.

 
Repeater warning board
 
'SPATE' indicator

When there is a station stop between the warning board and the commencement board, a yellow repeater warning board showing an R is positioned beyond the end of platforms to remind drivers of the restriction ahead.[22]

If the advertised TSR is not installed, or is withdrawn earlier than planned, a yellow SPATE ('Speed previously advertised terminated early')[22] board will be set up.

Emergency speed restriction edit

 
ESR warning indicator

If a speed restriction needs to be imposed before there is time to publish it in the Weekly Operating Notice, an Emergency speed restriction (ESR) is set up.[22] This consists of a temporary AWS magnet and flashing warning indicator (also known colloquially as a 'Dalek' or 'Metal Mickey')[26] placed before the usual temporary speed restriction equipment.

Network Rail will fax information about the ESR to train crew booking-on points, where it must be displayed in the red-coloured 'Late notice case'. Crews are required to check this case when signing on for duty.[23]

If the speed restriction remains in place long enough for it to be published in the Weekly operating notice, it will become a Temporary speed restriction so the Warning indicator and its associated AWS magnet will be removed.[26]

Blanket speed restriction edit

A Blanket speed restriction is used when it is necessary for trains to run more slowly over a large area.[22] This is commonly used for weather conditions such as high winds, high temperatures or snow. No trackside signs are put out for a Blanket speed restriction, which enables it to be imposed quickly. Initially train drivers are informed directly by the signaller, and information is faxed to drivers' booking on points where it is posted on the Late notice board.[23]

Other signals edit

Preliminary Routing Indicators edit

Preliminary Routing Indicators (PRIs) are installed on the approach to certain junctions. When the junction signal is displaying a 'proceed' aspect, the PRI will display an arrow. The arrow points up when the highest speed route is set. When a diverging route is set, the arrow points in the appropriate direction (mimicking the junction indicator on the junction signal). This advance indication gives the driver an opportunity to stop before the junction points, if wrongly routed. At the present time, PRIs are few in number, but they are likely to become more common.[27]

Proceed on Sight Authority edit

Proceed on Sight Authority is a new concept which introduces an additional aspect to allow the signaller to authorise drivers to pass signals when they are at red due to influences within the interlocking. The signal will notionally be used where the route setting and locking function is still proved to be operable but a function such as train detection or lamp proving of a signal ahead may be failed. The authority will allow the driver to pass the signal and proceed at a speed slow enough that they may stop short of any obstruction (in common with other degraded modes of operation) The term may be abbreviated to "PoSA".

A "Proceed On Sight Authority" is only shown in conjunction with a red main aspect on a main signal and when operated the two white lights in the subsidiary signal flash on and off together to warn the driver they were proceeding under caution only as far as the line can be seen to be clear.[28]

Off Indicator edit

 
Off indicator

Off Indicator: An illuminated off indication means the associated signal is showing a proceed aspect. These are mainly used at stations, for the benefit of the train-crew and platform staff. When the display is blank, it means that the associated signal is at danger. An illuminated indication CD (close doors) is an instruction to close the train's power-operated doors. An illuminated indication RA or R (right away) means that station duties are complete and the train may depart.

 
An old style incandescent “OFF” indicator at Brockenhurst, Hampshire

SPAD indicator edit

 
SPAD indicator, near Littleport on the Fen Line, protecting the entrance to a single line

A SPAD indicator[29] is a separate indicator which may be positioned after a main signal where there is a likelihood of a serious collision at a junction if a SPAD (signal passed at danger) occurs at the main signal. They are normally unlit but following a SPAD they display a steady red light between two flashing red lights arranged vertically.[30] Any driver who sees a SPAD indicator illuminated must stop their train immediately and subsequently contact the signaller for further instructions, even if they can see that the signal pertaining to their line is showing a proceed aspect. SPAD indicators are mounted against a blue backplate or surround to prevent confusion with a failed signal, as SPAD indicators are unlit.[30] Initial testing of SPAD indicators occurred in 1994, with the current design being installed in 1996.[30] Advances in train protection systems, especially decision to install Train Protection & Warning System in response to The Railway Safety Regulations 1999, has rendered the SPAD indicator largely obsolete.[30][31]

edit

Banner repeater signals[32] are provided on the approach to certain signals which have restricted sighting (for example because of curvature of the line, buildings, overbridges or tunnels), to give advance information of the signal aspect. Their meanings are[32]

  • Banner on: The signal to which it applies is at danger.
  • Banner off: The signal to which it applies is showing a proceed aspect.
  • Green banner: The signal to which it applies is showing a green aspect. A banner capable of showing this aspect has a "⦶" symbol on its identification plate.

Typically, banner repeaters were only capable of displaying whether their associated signal was "on" or "off", without the ability to reveal any further information as to the type of proceed aspect that their associated signal was displaying. LED technology in newer installations have enabled the creation of the three-aspect banner repeater, which enables the banner repeater to indicate that the associated signal is displaying a green aspect by using a green surround.

If two or more banner repeaters are placed together, this allows for the repetition of routing indications. Only one banner repeater in such a set will display an off indication for the appropriate route, while a danger signal is repeated by setting all repeaters in such a set to on.[33]

Obsolete signals edit

Purple lights edit

Used in particular circumstances such as wrong-road or goods lines.[34]

Three-position semaphore signals edit

From 1914, a small number of British installations, notably, the Great Western and the South Eastern and Chatham, used motor-operated three-position semaphore signals of North American origin.[35] These worked in the upper quadrant to distinguish them from the two-position lower quadrant semaphores that were standard at the time of their introduction. When the arm was inclined upwards at 45°, the meaning was "caution" and the arm in the vertical position meant "clear". Thus, three indications could be conveyed with just one arm and without the need for a distant arm on the same post.[35] In 1924, a committee from the Institution of Railway Signal Engineers discouraged the three-position signal, however installed examples did last into late 1960s, operating in the three-position manner.[35]

Euston to Watford experimental system edit

 
LMS signal at Willesden Junction. The green signal is for the line towards Euston / Elephant & Castle / Broad Street via Primrose Hill. The route to the left with the red signal leads to the North London Line and was used by trains to Broad Street via Hampstead Heath.
 
LMS Watford DC New Lines Signal Hatch End Station

This scheme, on the face of it, was a fairly standard colour light system, with each stop signal (which could show red or green) having an attendant repeater signal (showing red, yellow or green – the red used only for when the two stop signals on either side were also red). What made the scheme unusual was the provision of an automatic 'calling on' facility. The stop signals had an additional signal head ('marker light') that featured a red aspect plus a miniature yellow aspect. This marker light was mounted part way up the post. On repeater signals, the marker light was offset to the left-hand side of the post to indicate that the 'stop and proceed' rule applied. Junction stop signals were provided with two main signal heads, one mounted higher than the other. Splitting distant signals had three main heads, the centre one mounted higher than the other two.

When a train stopped at a red stop signal, its presence on the track started a time delay relay. At the conclusion of the time delay, the red marker light was extinguished and replaced by the miniature yellow (the upper red aspect remained lit). The train stop also lowered. The calling on aspect authorised the driver to proceed, but to be prepared to stop short of another train.

The scheme was not considered a great success. In fact, during periods of severe service disruption, it was not unusual to see several trains buffer-to-buffer along the line, though this occurred when the line was much busier than now. Concern was expressed that similar coloured aspects had different interpretations depending on where on the signal they appeared.

The system was finally identified for replacement following an accident at Kensal Green, when a main line train ran into the back of Bakerloo Line train.[36] The driver had apparently mistaken the calling on aspect for a normal yellow aspect (the signal was temporarily operating on a maximum yellow due to track side work). The indications were that the driver was distracted as his pay slip and its envelope were recovered from the wreckage – but this was never proved as the cause. It was also suggested that the driver may not even have checked the indications having observed the fall of the train stop. The entire line was resignalled to the standard colour light system in 1988.

Warning systems edit

Because of the propensity for heavy fog in some parts of the British Isles, fog signal rules were established on the UK railway system to keep train traffic moving without incurring the severe delays that would be necessary if drivers had to stop or travel slowly up to each signal and read its indication. During heavy fog, fogsignalmen would be stationed at distant signals with a lantern and detonators – small explosive charges that could be strapped to the rail to be exploded by the wheels of a train. The fogsignalman's duty was to repeat the indication of the signal using his lantern; the semaphore arm was usually obscured by fog and hence invisible to the driver of a moving train. If the distant signal was displaying 'caution' (warning that a signal ahead was at 'danger'), the detonators remained on the rail and the fogsignalman would show a yellow lamp to show 'caution'; if the distant signal was clear, the detonators would be removed from the rails and a green lamp would be displayed.

Britain's Great Western Railway introduced the Automatic Train Control (ATC) system in 1906. This system is the forerunner of today's Automatic Warning System (AWS) and consists of an electrical system that sounded a bell in the cab as the train approached a signal at clear. Power was fed through a metal ramp to a pickup on the underside of the locomotive to power the bell. An absence of the electrical voltage on the ramp caused a warning horn to sound in the locomotive's cab. The driver then had a set time to acknowledge the warning and start braking his train accordingly. If the driver did not acknowledge the warning, the brakes would be applied automatically. Where this was implemented, it did away with the need for fog signalling, since the driver could tell the state of the distant signal regardless of his ability to see it.

The current system of AWS in use on Britain's railways is similar in principle to the Great Western's ATC but does not rely on physical contact between the track equipment and the train; instead an inductive system using a combination of permanent and electromagnets is used.

On passenger lines, AWS is now often supplemented by the Train Protection & Warning System (TPWS). TPWS functions in two ways, Train Stop System (TSS) will automatically apply the train's brakes in the event of a fitted signal being passed at danger without authority and Over-speed Sensor System (OSS) will automatically apply the train's brakes in the event of a fitted train exceeding a set speed on approach to a fitted signal.[37]

On parts of the Great Western Mainline and the Chilterns line the trial systems of Automatic Train Protection (ATP) are still in use. These trials were ultimately discontinued in favour of TPWS, however, the original equipment is still maintained.

See also edit

Notes and references edit

  1. ^ "Track circuit block regulations". RSSB. Retrieved 2 September 2023.
  2. ^ "Railsigns.uk - Track Circuit Block". Retrieved 7 March 2017.
  3. ^ a b c d e Kichenside, G.M.; Williams, Alan (1975). "1 - Development of British Signalling". British Railway Signalling (3rd ed.). London: Ian Allan Publishing. pp. 5–11. ISBN 0 7110 0571 0.
  4. ^ Ellis, Ian (2010). British Railway Engineering Encyclopedia (2nd ed.). Lulu Enterprises Incorporated. p. 47. ISBN 978-1-4461-8190-4.
  5. ^ Vanns, M.A. (1997). An Illustrated History of Signalling. Ian Allan. p. 25. ISBN 0-7110-2551-7.
  6. ^ Vanns, M.A. (1995). Signalling in the Age of Steam. Ian Allan. p. 80. ISBN 0-7110-2350-6.
  7. ^ "Online Rulebook: Signals, handsignals, indicators and signs handbook, Section 3 – "Semaphore Signals"". RSSB. Retrieved 27 September 2023.
  8. ^ Online Rulebook: Signals, handsignals, indicators and signs handbook, section 2.5 Flashing Yellow Aspects. RSSB. Retrieved 5 September 2020.
  9. ^ "Lightweight Signalling Handbook" (PDF). Unipart Dorman. Unipart Dorman. Retrieved 13 June 2021.
  10. ^ a b c "Online Rulebook: Signals, handsignals, indicators and signs handbook, Section 2.7 "Position Light Signals"". RSSB. Retrieved 5 September 2020.
  11. ^ "Online Rulebook: Signals, handsignals, indicators and signs handbook, Section 5.1 "Limit of Shunt indicators"". RSSB. Retrieved 5 September 2020.
  12. ^ Green, Jonathon (1987). Dictionary of jargon. London: Routledge & Kegan Paul. p. 212. ISBN 0-7100-9919-3.
  13. ^ Vanns, Michael (1997). An illustrated History of signalling. Shepperton, England: Ian Allan. p. 58. ISBN 0-7110-2551-7.
  14. ^ "Online Rulebook: Signals, handsignals, indicators and signs handbook. Section 7.1 "Permissible speed indicators"". Network Rail. Retrieved 5 September 2020.
  15. ^ "Online Rulebook: Signals, handsignals, indicators and signs handbook, Section 7.4 "Differential permissible speed indicators"". RSSB. Retrieved 5 September 2020.
  16. ^ Ellis, Ian (2010). British Railway Engineering Encyclopedia (2nd ed.). Lulu Enterprises Incorporated. p. 415. ISBN 978-1-4461-8190-4.
  17. ^ a b "Online Rulebook: Signals, handsignals, indicators and signs handbook, Section 7.2 "Warning indicators"". RSSB. Retrieved 5 September 2020.
  18. ^ a b c Ellis, Ian (2010). British Railway Engineering Encyclopedia (2nd ed.). Lulu Enterprises Incorporated. p. 497. ISBN 978-1-4461-8190-4.
  19. ^ a b c . railsigns.uk. p. 2. Archived from the original on 28 January 2023. Retrieved 29 December 2023.
  20. ^ . railsigns.uk. p. 3. Archived from the original on 28 January 2023. Retrieved 29 December 2023.
  21. ^ . railsigns.uk. Archived from the original on 28 January 2023.
  22. ^ a b c d e "Online Rulebook: Signals, handsignals, indicators and signs handbook. Section 8 "Speed restriction signs"". RSSB. Retrieved 5 September 2020.
  23. ^ a b c "Rule Book Modules: Train working (TW) Preparation and movement of trains. Section 3 Attending for and leaving duty". RSSB. Retrieved 2 September 2023.
  24. ^ . railsigns.uk. p. 3. Archived from the original on 18 May 2022. Retrieved 28 December 2023.
  25. ^ . railsigns.uk. p. 2. Archived from the original on 18 May 2022. Retrieved 28 December 2023.
  26. ^ a b Network Rail. "Network Rail standardised tasks: How to install an Emergency Indicator". Retrieved 9 August 2018.[dead YouTube link]
  27. ^ "Online Rulebook: Signals, handsignals, indicators and signs handbook. Section 5.14 – "Other Signals: Preliminary Route Indicators"". RSSB. Retrieved 5 September 2020.
  28. ^ Railway Group Standard GE/RT8071
  29. ^ Online Rulebook: Signals, handsignals, indicators and signs handbook, section 5.5 Signal Passed At Danger(SPAD) Indicator
  30. ^ a b c d . railsigns.uk. Archived from the original on 18 May 2022. Retrieved 31 December 2023.
  31. ^ . railsigns.uk. Archived from the original on 18 May 2022. Retrieved 31 December 2023.
  32. ^ a b "Master Rulebook: Signals, hand signals, indicators and signs handbook. Section 7.4 "Banner repeating and co-acting signals"". RSSB. Retrieved 5 September 2020.
  33. ^ "Co-acting Signals and Repeater Signals".
  34. ^ S&DJR wrong-road signals
  35. ^ a b c Kichenside, G.M.; Williams, Alan (1975). "1 - Development of British Signalling". British Railway Signalling (3rd ed.). London: Ian Allan Publishing. pp. 12–14. ISBN 0 7110 0571 0.
  36. ^ Sawyer, D A (22 November 1988). "Report on the Collision that occurred on 16th October 1986 at Kensal Green in the London Midland Region British Railways". The Railways Archive. Department of Transport. Retrieved 9 October 2015.
  37. ^ "Train Protection & Warning System (TPWS)". RailSigns. Retrieved 23 October 2023.

External links edit

  • Railway Industry Standard:RIS-0703-CCS Signalling layout and signal aspect sequence requirements
  • Information on traditional British signalling
  • Docklands Light Railway signalling system
  • History of Railway Signalling in the Derby area
  • Clive Feather's Junction Signalling
  • SimSig UK Network Rail Signalling simulations
  • Comms Design Ltd - System developer for RETB Next Generation Radio Electronic Token Block Signalling in the United Kingdom

railway, signalling, this, article, needs, additional, citations, verification, please, help, improve, this, article, adding, citations, reliable, sources, unsourced, material, challenged, removed, find, sources, news, newspapers, books, scholar, jstor, septem. This article needs additional citations for verification Please help improve this article by adding citations to reliable sources Unsourced material may be challenged and removed Find sources UK railway signalling news newspapers books scholar JSTOR September 2023 Learn how and when to remove this template message The railway signalling system used across the majority of the United Kingdom rail network uses lineside signals to control the movement and speed of trains Network Rail two aspect colour light railway signal set at danger The modern day system mostly uses two three and four aspect colour light signals using track circuit or axle counter block signalling 1 2 It is a development of the original absolute block signalling that is still being used on many secondary lines The use of lineside signals in Britain is restricted to railways with a maximum speed limit of up to 125 miles per hour 201 km h This is the maximum speed at which the train can travel safely using line side signalling if the train runs any faster it will not be possible for the train driver to safely read colour light signalling Trains operating at speeds faster than 125 mph for example on High Speed 1 use an in cab signalling system that automatically determines and calculates speed restrictions Contents 1 Early days 2 Running signals 2 1 Semaphore signals 2 2 Colour light signals 2 2 1 Flashing yellow aspects 2 2 2 Failures 2 2 3 Lens placement and alignment 2 2 4 Unusual colour light aspects 2 2 5 Approach control 2 2 6 Delayed Yellow Operation 3 Subsidiary signals 3 1 Semaphore subsidiary signals 3 1 1 Permissive signals 3 2 Position light signals 3 2 1 Semaphore and Disc Shunting Signals 4 Junction signals 4 1 Semaphore junction signals 4 2 Colour light junction signals 5 Speed indicators 5 1 Permissible speed indicators 5 1 1 Permissible speed indicator 5 1 2 Differential permissible speed indicator 5 1 3 Diverging permissible speed indicator 5 1 4 Warning indicator 5 1 5 Diverging warning indicator 6 Speed restrictions 6 1 Temporary speed restriction 6 2 Emergency speed restriction 6 3 Blanket speed restriction 7 Other signals 7 1 Preliminary Routing Indicators 7 2 Proceed on Sight Authority 7 3 Off Indicator 7 4 SPAD indicator 7 5 Banner repeating signals 8 Obsolete signals 8 1 Purple lights 8 2 Three position semaphore signals 8 3 Euston to Watford experimental system 9 Warning systems 10 See also 11 Notes and references 12 External linksEarly days edit nbsp A British Upper Quadrant semaphore signal In the days of the first British railways policemen were employed by every railway company Their jobs were many and varied but one of their key roles was the giving of hand signals to inform engine drivers as to the state of the line ahead 3 They had no means of communication with their colleagues along the line and trains were only protected by a time interval after a train had passed him a policeman would stop any following train if it arrived within say 5 minutes for any between 5 and 10 minutes after they would show a caution signal and after 10 minutes the line was assumed to be clear 3 Therefore if a train failed within a section as was very common in the early days the policeman controlling entry to the section would not know and could easily give a clear signal to a following train when the section was not in fact clear 3 The number of collisions which resulted from this led to the gradual introduction of the absolute block principle all systems of working other than this including time interval and permissive block were outlawed on passenger lines in 1889 and all passenger lines were suitably equipped by 1895 3 As train speeds increased it became increasingly difficult for enginemen to see hand signals given by the policemen so the railways provided various types of fixed signals to do the job operated by the policemen or signalmen as they soon became known it is due to this that British railway slang still names signalmen as Bobbies 4 Many types were devised but the most successful was the semaphore introduced in 1841 and soon becoming widespread although some other types did linger on until the 1890s 3 Running signals editSee also Railway signal The terms on and off are used in describing British railway signals When describing an older semaphore on refers to a signal arm in the horizontal position and off means a signal raised upwards or lowered downwards from pivot point at up to 60 With regard to newer colour light signals on is synonymous with the most restrictive aspect while all other aspects are considered to be off A way to remember this is to refer to the state of the red light or yellow light if the signal is a distant and incapable of displaying a red aspect If it is lit the signal is on and if the red light is unlit the signal is off Semaphore signals edit nbsp Semaphore stop signal lower quadrant type nbsp Semaphore distant signal lower quadrant type nbsp Combined semaphore stop and distant signals lower quadrant type Main article Railway semaphore signal The traditional British signal is the semaphore comprising a mechanical arm that rises or drops to indicate clear termed an upper quadrant or lower quadrant signal respectively Both types are fail safe in the event of breakage of the operating pull wire but lower quadrant signals require a heavy counterweight with push pull rod between counterweight and arm linkage generally assisted by the spectacle that carries the coloured lenses for use at night to do that while upper quadrant signals fall back to danger under the weight of the arm During the 1870s almost all the British railway companies standardised on the use of semaphore signals which were then invariably of the lower quadrant type 5 From the 1920s onwards upper quadrant semaphores almost totally supplanted lower quadrant signals in Great Britain except on former GWR lines and their succession to BR WR and latterly Network Rail Western Zone 6 There are two main types of semaphore stop and distant The stop signal consists of a red square ended arm with a vertical white stripe typically 9 12 inches 230 300 mm from the end and advises the driver whether the line immediately ahead is clear or not A stop signal must not be passed in the horizontal on danger position except where specially authorised by the signaller s instruction By night it shows a red light when on and a green light when off clear The green light is usually produced through the use of a blue spectacle lens which produces green when lit from behind by the yellowish flame from a paraffin lamp The other type is the distant signal which has a yellow arm with a V fishtail notch cut out of the end and a black chevron typically 9 12 inches 230 300 mm from the end Its purpose is to advise the driver of the state of the following stop signal s it may be passed in the on position but the driver must slow their train to be able to stop at the next stop signal When off a distant signal tells the driver that all the following stop signals of the signal box are also off and when on tells the driver that one or more of these signals is likely to be at danger By night it shows a yellow light when on and a green light when off On many branch lines and short block sections a distant signal was often fixed at Caution standalone or mounted below a Stop semaphore and so exhibited only a yellow light at night Where a signal consists of a combination of a stop and distant arms a mechanism is included to prevent the distant arm clearing while the stop arm is at danger Current British practice mandates that semaphore signals both upper and lower quadrant types are inclined at an angle of 45 degrees from horizontal to display an off indication 7 Colour light signals edit nbsp Clearing sequence from red to green of a 4 aspect colour light signal In total colour light signals in the UK display seven aspects These are Green Clear The train may proceed subject to any speed restrictions applying to the section of line or to the train itself See also Flashing Green below Double yellow Preliminary caution The next signal is displaying a single yellow aspect Flashing double yellow indicates that the next signal is showing flashing yellow nbsp A caution signal at ME 130 at Beaconsfield Station Single yellow Caution The driver must prepare to stop the train at the next signal Flashing single yellow warns that a diverging route is set The next signal will be a steady single yellow with a junction indicator Red Danger Stop Additionally on the 140 miles per hour 230 km h trial section of line between Peterborough and York Flashing Green the train may proceed at line speed Where this aspect is in use the steady green aspect means that the next signal shows double yellow The green aspect and the four yellow aspects are known as proceed aspects as they allow the train to pass the signal the red aspect requires the train to stop Two aspect systems use red and green only Three aspect systems include yellow Four aspect signalling which also includes double yellow is mostly used on busy routes to allow shorter headways and on fast routes to provide longer braking distances Flashing yellow aspects edit nbsp Diverging route signalling the driver must slow down and be prepared to stop at the red signal A flashing single or double yellow aspect indicates that a train is to take a diverging route ahead with a lower line speed than the main route A flashing double yellow only used in 4 aspect signalling means that the next signal is showing flashing single yellow A flashing single yellow means that the next signal at the junction is showing steady single yellow with an indication for a diverging route and the signal beyond the junction is at danger red 8 This sequence of increasingly restrictive aspects forces the driver to slow the train down in preparation for stopping at the red signal and this ensures that the train crosses the junction at the appropriate speed As the train nears the junction the red signal beyond may step up to a less restrictive aspect depending on the state of the line ahead The two yellows in a flashing double yellow flash in unison rather than alternately but the flashing double yellow and single yellows are not synchronised Flashing yellow signalling contains an additional safety vital relay typically referred to as Flashing Lamp Proving Relay FECR this changes over the supply for the yellow signal transformers at each signal where flashing aspects are provided from a steady 110Va c to a flashing supply switched on and off at about 1 2 Hz or 70 72 c p m once the junction points have been set locked and detected correctly for the lower speed divergence This supply has to be specially provided either from the power box or control centre or by a specially designed signal control module in more modern LED installations The increased complexity in providing flashing aspects prior to the introduction of solid state interlocking resulted in more stringent criteria for the use of flashing aspects in earlier installations Failures edit A failure of the changeover relay to switch on the flashing indication to the double yellow aspect would not be a problem as it is considered that a steady double yellow followed by a flashing single yellow aspect sequence is acceptable However safety circuitry is connected to the single yellow flashing supply to ensure that a failure of the single yellow to change over to the flashing supply would abort the approach release from yellow sequence and re impose the normal approach control from red sequence as failure of the single yellow to flash following a flashing double yellow is considered potentially very dangerous citation needed Lens placement and alignment edit nbsp Use of LEDs means that four aspect signals can be achieved with only two apertures This is similar to how searchlight type signals work The design considerations determining the familiar arrangement of road signals with red at the top do not apply to the railway In particular there is no risk that a signal will be masked by a tall vehicle in front of the driver Furthermore to position the red aspect at the lowest position may reduce risk of obscuring of that lens by heavy snow or ice There are some standard designs but local conditions and geography such as tunnels may require variations On pole and gantry mounted railway signals the most restrictive aspect is usually the lowest of the principal aspects This places the most restrictive aspect nearest to the driver s eyeline and also reduces the possibility of the lens becoming obscured by snow building up on the lens hood of an aspect below Similarly on ground mounted signals the most restrictive aspect is positioned as the highest of the principal aspects this again places the most restrictive aspect nearest to the driver s eyeline and reduces the possibility of obscuration through snow build up In two aspect signals the green aspect is typically the uppermost and the red aspect the lowest In three aspect signals the order from top to bottom is typically green yellow red In four aspect signals the order is typically yellow green yellow red The top yellow is only used in the display of the double yellow aspect and the lower yellow is used for the display of both the double yellow and single yellow aspects In the past use was made of searchlight signals These have a single lamp in front of which is placed either a red yellow or green filter to show the respective aspect The filter assembly is moved by an electro magnet For a double yellow aspect a second lamp is fitted illuminated only when required A few traditional searchlight signals i e with moving filter glasses inside remain in use in the Clacton area The concept had a renaissance in the 2000s with the advent of LEDs which allow the same aperture to be used to display multiple colours Similar to the earlier searchlight signals these LED signals use one aperture to display red yellow and green aspects and a second aperture to display the top yellow of a double yellow where required in four aspect signalling areas 9 When junction indicators are fitted they are typically placed above the principal aspects of a signal Signal alignment is generally aimed towards a distance 200 yards 183 metres in rear of the signal that is in the direction behind the driver observing it and at a height of 2 5 to 3 m above the left hand rail Ground mounted signals are rarely so critical for alignment an advantage of ground mounting and are often used in tunnels where the relative luminosity of the aspects is much higher Unusual colour light aspects edit nbsp Double green aspect on the London Underground Flashing green flashing green aspects are employed on the East Coast Main Line north of Peterborough They were installed for 140 mph 225 km h running in connection with the testing of the new InterCity 225 electric trains with a steady green limiting test trains to the normal speed limit of 125 mph 200 km h They no longer have official meaning but remain in place and there are a couple of locations where the presence or absence of flashing provides useful information to drivers Splitting distants at some locations approaching a junction two heads are placed side by side When this signal or the junction signal is at danger one head is dark and the other shows red or single yellow When the junction signal is not at danger both heads show an aspect the one for the route set ahead of the junction left or right shows the correct aspect while the other shows single yellow or double yellow at an outer splitting distant Green over yellow or green over green the Liverpool Loop Line and London Underground use separate red green stop and yellow green repeater signals If a repeater signal is at the same location as a stop signal it is placed underneath it and lit only when the stop signal is green Thus the order of the heads is from top to bottom green red green yellow and aspects are red green over yellow and green over green Yellow over green this was used in the experimental speed signalling at Mirfield to provide an additional caution It meant that the next signal was showing double yellow It was discontinued in 1970 Approach control edit At certain locations such as the final signal on approach to a terminus station or at a diverging route requiring a large speed reduction approach release may be used The driver will be checked down with a normal signalling sequence green double yellow yellow for a four aspect area and the red signal clears when it is proven that the approaching train must have slowed to an appropriate speed for the conditions ahead Typically for low speed junctions e g 25 mph 40 km h crossover on a 90 mph 140 km h line the train will be brought down to nearly standing at the signal before it clears Approach control is achieved by maintaining the signal at danger until the approach track circuit has been occupied for a specified period of time After the track circuit has been occupied for the specified period of time the signal is allowed to step up to the highest available aspect and display the junction indicator where applicable The length of time required varies on the design of the installation Where a junction indicator is used an additional safety precaution ensures that failure of the indicator does not cause an irregular or mutilated display to appear This can be observed in practice at Bescot Stadium northbound the signal when cleared for the divergence for Walsall bound trains shows the junction indicator with a red aspect for 2 3 seconds before the main aspect clears this is whilst the interlocking proves sufficient elements of the junction indicator are lit before clearing the main aspect With route relay interlocking the proving circuitry for the junction indicator is housed locally With a solid state or computerised signalling this proof has to pass to the main interlocking hence the additional delay in proving that the junction indicator is lit prior to clearing the main signal Delayed Yellow Operation edit In the Absolute Block Signalling System the signalling regulations provide for trains to be signalled into a section of line where the designated overlap past the signal is not clear the signaller keeps the signal concerned at danger until the train has come to a stand at it and then the driver must be warned verbally by the signaller that the line is not clear the whole distance to the next signal then once the signaller is satisfied the driver has understood the warning they will typically pull off the signal very slowly the driver understands from this that they are being accepted into the occupied length of line under Warning Regulation 4 In colour light power box operated areas the home signal where warning arrangements are in force has a time release similar to approach control from red but the control is more stringent the signal only clears when the speed of the train is detected to be less than 10 mph and only clearance to single yellow is allowed this is called delayed yellow operation and is often found at the approach to large stations where two trains may use one platform Subsidiary signals editSubsidiary signals are those which usually control only shunting moves as opposed to train movements Under this category come permissive signals and shunting signals Semaphore subsidiary signals edit Permissive signals edit nbsp A British lower quadrant semaphore stop signal with subsidiary arm belowAlthough British railway operation is based on the block principle whereby only one train is allowed in a signal section there are situations when another train must enter the section and permissive signals are used to control that movement There are three types of permissive semaphore calling on shunt ahead and warning signals Today all three look broadly the same they are shaped like a normal semaphore stop signal though only about two thirds of the size and are painted red with a white horizontal band running centrally along them When on they show a small red or white light and when off they display a small green light and an illuminated C S or W depending on their function Modern day colour light permissive signals consist of two white lights at 45 normally unlit When lit with the main aspect showing red they instruct the driver to proceed but be prepared to stop short of any obstruction When unlit the driver obeys the main signal aspect They can therefore function either as calling on or shunt ahead signals depending on their location the Warning Arrangement in colour light areas uses the main aspect in a similar fashion to approach release junction signalling in this case it is called a Delayed Yellow Calling on signal The calling on signal is by far the most common of the three types of subsidiary signal It is mounted under the stop signal governing entry to usually a platform and when pulled off allows the driver to proceed cautiously for as far as the line is clear or to the next stop signal This can allow three basic moves to take place A second train to run into and exchange passengers at an already partly occupied platform Additional vehicles to be attached to the rear of a standing train A locomotive to run into a platform occupied by coaches to be attached to them Shunt ahead signal The shunt ahead signal is normally mounted under the signal governing entry to the section ahead and as its name implies allows a train to enter the section and clear a set of points in order to carry out a shunting move Warning signal The warning signal is the most unusual of the three types of British permissive signal It is like the shunt ahead placed under the signal governing entry to the section ahead but its function is very different For a signaller to accept a train both their block section and the line for a quarter mile inside their outer home signal must usually be clear the quarter mile is a precaution in case the driver fails to stop in time for the outer home signal However it is possible to accept a train under the Warning Arrangement if the block section but not the quarter mile overlap is clear As its name implies the signaller must stop and caution the driver of the train concerned and the warning signal simply replaces the signaller s caution where this operation is frequent Because there is no margin for braking error the warning arrangement cannot usually be applied to passenger trains its commonest use is to allow a goods train to run into a section to shunt a siding in the middle of that section while a train is still occupying the station ahead Position light signals edit nbsp Associated position light nbsp Ground position light Ground Position Light nbsp Yellow position light Shunt Ahead nbsp Limit of Shunt Position light signals allow a train to move into a section under caution the line ahead may be occupied so the driver must drive at a speed that enables them to stop short of any obstruction Modern position lights consist of three lenses in a triangular formation Associated position light 10 signals APLS are attached to a main aspect signal and are only illuminated when a shunting movement is permitted When the main signal aspect is red the position light displays two white lights at an angle of 45 indicating that the driver may pass the signal with caution When not cleared these signals are unlit and the train driver obeys the main aspect signal Ground position light 10 signals GPLS are always illuminated and are located either near the ground or on a post with no corresponding main signal They can display the following aspects Either two red lights or one white light and one red light in a horizontal arrangement meaning Stop Two white lights at a 45 angle meaning Proceed The driver may pass this signal with caution and a speed that allows the train to stop short of any obstruction Shunt ahead 10 signals are fitted with either two yellow lights or one white and one yellow light They are usually found at the exits of marshaling yards and sidings and can be passed at danger for a movement in the direction for which the signal cannot be cleared e g into a headshunt rather than onto the main line This arrangement removes the requirement for the signal to be cleared every time a shunt is to take place within the sidings without fouling the main running lines When cleared they display two white lights at 45 degrees and permit movements onto the main line Limit of Shunt 11 A limit of shunt signal consists of two permanently lit red lights in a horizontal arrangement meaning Stop No train is allowed to pass this signal as the direction will be against the normal direction of travel A limit of shunt signal is permanently lit and cannot display any other aspect there is no lens fitted in the proceed position on these signals Semaphore and Disc Shunting Signals edit nbsp Disc shunting signalThe mechanical equivalents of these shunting signals are found as miniature semaphores the arms are the same size as those of permissive signals and disc varieties the disc is about 12 inches 30 cm diameter The small arm semaphores are painted in the same way as a full size stop signal while the discs are painted white with a red horizontal band A small arm semaphore shows clear in the same way as a full size stop signal while a disc rotates through 45 degrees or so when pulled off so that the red band is angled Both display small red or green lights by night There are also semaphore and disc equivalents of the yellow light shunting signals the small arm semaphores being painted yellow with a black stripe and the discs either black or white with a yellow stripe by night they show small yellow lights when on and small green lights when off Finally instead of fixed position light signals the Limit of Shunt may also be signalled by a simple white floodlit board on which the words Limit of Shunt are written in red Junction signals editBritish railway signalling is unusual in that it uses route signalling rather than the speed signalling used by most railways in continental Europe or North America A driver is informed of which route they will take at a junction rather than the speed at which they should travel through it Semaphore junction signals edit nbsp Splitting signalsIn semaphore areas junctions are signalled using a series of between 2 and 5 stop signal arms on one bracket or gantry known as splitting signals Each arm usually has its own post doll on the bracket and each arm applies to one possible route The relative heights of the posts usually convey some information about the lines to which they apply although there is no definite standard In some cases the tallest post applies to the highest speed route in others it applies to what the railway considered the most important route Traditionally splitting distant signals would be provided a series of side by side distant signals telling the driver which post on the following stop signal was off but practice since the 1920s has erred towards providing just one distant which is locked at caution if a large speed reduction is necessary Drivers of trains must know which signal arm applies to which route and the speed limit on that route accidents have resulted from drivers either mis reading splitting signals or forgetting speed restrictions and consequently approaching junctions too fast Where there is a large number of possible routes splitting signals are unsuitable because they could easily be confused and route indicators are used instead These consist of a black background mounted under a single stop signal on which is superimposed a white letter s number s or combination of the two to make a code indicating the route to be taken For example if the possible routes were to Cambridge and to Norwich a Norwich bound train might be shown N and a Cambridge bound train C The route code is only shown when the signal is off In semaphore areas route indicators may be mechanical with boards that slide into view to display the code or electric theatre type with a light projected through a suitably printed screen Colour light junction signals edit nbsp Junction indicator right route nbsp Junction indicator First left route nbsp Alphanumeric route indicator The colour light equivalent of a splitting signal is the junction indicator colloquially known as a lunar indicator feather or horn in Scotland Mounted above a colour light signal they consist of a row of white lights originally a single long u shaped fluorescent tube in an open fronted case nowadays five but traditionally three angled to the left or right depending on the direction of the divergence 12 13 When the highest speed route is set the indicator is not illuminated unless all routes are of a similar speed in which case there is an indication for each route When a diverging route is set the respective junction indicator is illuminated These can be used where there is a maximum of six routes as well as the straight route and where a maximum of three routes are to one side of the straight route Two junction indicators in opposite directions on the same signal are colloquially known as bunny ears Where junction indicators cannot be used route indicators are also used in colour light areas They may take the form of a dot matrix of white lamps or in more recent installations fibre optic displays driven from a single lamp to display the route code At certain locations no route indication is given for the highest speed route As with semaphore route indicators they are usually restricted to areas where all routes are at low speed often on the approach or departure from large stations In areas where speeds are lower and there are a number of routes which can be taken alphanumeric also called theatre style route indicators are used to display a number or a letter e g a platform number or line designation to denote the route the train is to take They may be located above or beside the relevant signal When a route is set and the signal is cleared the relevant letter or number is shown On shunting signals where speeds are much lower a miniature version of the alphanumeric route indicator is used When a route is set at a junction that involves the train taking a diverging route that must be passed at less than the mainline speed a system known as approach release is used There are a number of different types of approach release that are used on British railways but the most often used is approach release from red This system has the signal before the diverging junction held at red until the train approaches it whereupon it changes to a less restrictive aspect with the appropriate direction feather of five white lights This is required so that the signals approaching show the correct caution aspects slowing the train down for the junction While the junction signal is held at red the preceding signal will be displaying caution yellow and the one before that will display preliminary caution double yellow if it is a 4 aspect signal This system allows for a gradual decrease in speed until a safe speed is reached for the train to move through the junction Another common system is approach release from yellow with flashing aspects in rear It is essentially similar to approach release from red except that the junction signal is released from yellow and the signals in rear will flash to warn the driver that the train will be taking a diverging route ahead Where the turnout speed is the same as the mainline speed approach release is not necessary Speed indicators editSpeed indicators are displayed along a route to ensure a train does not go faster than the maximum permitted speed Permissible speed indicators edit In the UK every section of railway line has a maximum speed known as the Permissible speed 14 Table A of the Network Rail Sectional Appendix provides a list of these Where there is a change in permissible speed on a line a permissible speed indicator sign will show the new speed Train crew are expected to know every permissible speed for all the routes they work over as part of their Route knowledge When the speed limit increases the rear end of the train passing must completely clear the speed limit sign before the speed limit can take effect This minimises the risk of derailment Permissible speed indicator edit nbsp Permissible Speed Indicator Permissible speed indicator This example is displaying a maximum permissible speed of 125 mph 201 km h If the speed figure is on a yellow disc it is an enhanced permissible speed that only applies to certain trains that are specifically engineered to run at this speed safely such as tilting trains If the speed figure is in white numerals on a black disc it is in kilometres per hour instead of miles per hour Differential permissible speed indicator edit nbsp Differential permissible speed indicator The number below the line always shows a higher speed and applies to passenger trains parcel and postal trains and light locomotives while the top number applies to all other trains 15 16 This example therefore is displaying a maximum permissible speed of 70 mph 110 km h for passenger trains parcel and postal trains and light locomotives in addition to a maximum permissible speed of 40 mph 64 km h for all other trains Diverging permissible speed indicator edit nbsp Diverging permissible speed indicator This example is displaying a maximum permissible speed of 40 mph 64 km h only for the diverging route to the left Unless otherwise indicated with another sign this does not apply to the current route Warning indicator edit nbsp The original Morpeth Board from 1971 1986 nbsp Permissible speed warning indicator for 50 mph Warning indicators 17 are provided whenever there is a reduction in permissible speed of a third or more 17 and are placed at the service braking distance from the start of the lower speed 18 The original version was introduced in 1971 following the 1969 derailment at Morpeth Curve in Morpeth Northumberland 19 The original version consisting of a black circle with a yellow outer ring and numbers illuminated at night by a floodlight This design was replaced in 1986 by the current design 19 20 However the original design did carry on into the mid 2000s 21 Where a speed restriction reduced the permissible speed by one third or more when a speed limit is above 50 miles per hour 80 km h an audible warning to the train driver via an AWS magnet must be provided 18 They are colloquially known as Morpeth boards owing to their connection to the Morpeth Curve 19 18 Diverging warning indicator edit nbsp Permissible speed warning indicator for 50 mph with a directional arrow These indicators warn the driver of a lower speed limit on a route diverging ahead This example is displaying a maximum permissible speed of 75 mph 121 km h on the left diverging route These warnings are provided whenever there is a reduction of permissible speed of a third or more and again are placed at the service braking distance from the start of the lower speed Speed restrictions editTemporary speed restriction edit When it is necessary to carry out planned maintenance or repair work on a line a temporary speed restriction TSR may be installed at a particular location 22 Train crew are notified of this in the Network Rail issued Weekly Operating Notice which they are required to read before they book on duty 23 The current yellow green reflective sign designs came into use in the mid 1990s replacing battery powered electric lights that displayed a pair of flashing white lights and an illuminated speed indicator on the warning sign 24 25 nbsp TSR warning boardAt the service braking distance before the speed restriction a temporary AWS magnet is installed between the running rails followed by a yellow speed warning board nbsp nbsp TSR Speed indicator Left and a Termination indicator Right At the commencement of the speed restriction there is a yellow speed board and at the end is a yellow termination board The train cannot accelerate to the maximum permissible speed of the line until the last vehicle has passed the T indicator unless a second A board is mounted above the termination board nbsp Repeater warning board nbsp SPATE indicatorWhen there is a station stop between the warning board and the commencement board a yellow repeater warning board showing an R is positioned beyond the end of platforms to remind drivers of the restriction ahead 22 If the advertised TSR is not installed or is withdrawn earlier than planned a yellow SPATE Speed previously advertised terminated early 22 board will be set up Emergency speed restriction edit nbsp ESR warning indicatorIf a speed restriction needs to be imposed before there is time to publish it in the Weekly Operating Notice an Emergency speed restriction ESR is set up 22 This consists of a temporary AWS magnet and flashing warning indicator also known colloquially as a Dalek or Metal Mickey 26 placed before the usual temporary speed restriction equipment Network Rail will fax information about the ESR to train crew booking on points where it must be displayed in the red coloured Late notice case Crews are required to check this case when signing on for duty 23 If the speed restriction remains in place long enough for it to be published in the Weekly operating notice it will become a Temporary speed restriction so the Warning indicator and its associated AWS magnet will be removed 26 Blanket speed restriction edit A Blanket speed restriction is used when it is necessary for trains to run more slowly over a large area 22 This is commonly used for weather conditions such as high winds high temperatures or snow No trackside signs are put out for a Blanket speed restriction which enables it to be imposed quickly Initially train drivers are informed directly by the signaller and information is faxed to drivers booking on points where it is posted on the Late notice board 23 Other signals editPreliminary Routing Indicators edit Preliminary Routing Indicators PRIs are installed on the approach to certain junctions When the junction signal is displaying a proceed aspect the PRI will display an arrow The arrow points up when the highest speed route is set When a diverging route is set the arrow points in the appropriate direction mimicking the junction indicator on the junction signal This advance indication gives the driver an opportunity to stop before the junction points if wrongly routed At the present time PRIs are few in number but they are likely to become more common 27 Proceed on Sight Authority edit Proceed on Sight Authority is a new concept which introduces an additional aspect to allow the signaller to authorise drivers to pass signals when they are at red due to influences within the interlocking The signal will notionally be used where the route setting and locking function is still proved to be operable but a function such as train detection or lamp proving of a signal ahead may be failed The authority will allow the driver to pass the signal and proceed at a speed slow enough that they may stop short of any obstruction in common with other degraded modes of operation The term may be abbreviated to PoSA A Proceed On Sight Authority is only shown in conjunction with a red main aspect on a main signal and when operated the two white lights in the subsidiary signal flash on and off together to warn the driver they were proceeding under caution only as far as the line can be seen to be clear 28 Off Indicator edit nbsp Off indicator Off Indicator An illuminated off indication means the associated signal is showing a proceed aspect These are mainly used at stations for the benefit of the train crew and platform staff When the display is blank it means that the associated signal is at danger An illuminated indication CD close doors is an instruction to close the train s power operated doors An illuminated indication RA or R right away means that station duties are complete and the train may depart nbsp An old style incandescent OFF indicator at Brockenhurst Hampshire SPAD indicator edit nbsp SPAD indicator near Littleport on the Fen Line protecting the entrance to a single line A SPAD indicator 29 is a separate indicator which may be positioned after a main signal where there is a likelihood of a serious collision at a junction if a SPAD signal passed at danger occurs at the main signal They are normally unlit but following a SPAD they display a steady red light between two flashing red lights arranged vertically 30 Any driver who sees a SPAD indicator illuminated must stop their train immediately and subsequently contact the signaller for further instructions even if they can see that the signal pertaining to their line is showing a proceed aspect SPAD indicators are mounted against a blue backplate or surround to prevent confusion with a failed signal as SPAD indicators are unlit 30 Initial testing of SPAD indicators occurred in 1994 with the current design being installed in 1996 30 Advances in train protection systems especially decision to install Train Protection amp Warning System in response to The Railway Safety Regulations 1999 has rendered the SPAD indicator largely obsolete 30 31 Banner repeating signals edit nbsp Banner on nbsp Banner off nbsp Banner green Banner repeater signals 32 are provided on the approach to certain signals which have restricted sighting for example because of curvature of the line buildings overbridges or tunnels to give advance information of the signal aspect Their meanings are 32 Banner on The signal to which it applies is at danger Banner off The signal to which it applies is showing a proceed aspect Green banner The signal to which it applies is showing a green aspect A banner capable of showing this aspect has a symbol on its identification plate Typically banner repeaters were only capable of displaying whether their associated signal was on or off without the ability to reveal any further information as to the type of proceed aspect that their associated signal was displaying LED technology in newer installations have enabled the creation of the three aspect banner repeater which enables the banner repeater to indicate that the associated signal is displaying a green aspect by using a green surround If two or more banner repeaters are placed together this allows for the repetition of routing indications Only one banner repeater in such a set will display an off indication for the appropriate route while a danger signal is repeated by setting all repeaters in such a set to on 33 Obsolete signals editPurple lights edit Used in particular circumstances such as wrong road or goods lines 34 Three position semaphore signals edit From 1914 a small number of British installations notably the Great Western and the South Eastern and Chatham used motor operated three position semaphore signals of North American origin 35 These worked in the upper quadrant to distinguish them from the two position lower quadrant semaphores that were standard at the time of their introduction When the arm was inclined upwards at 45 the meaning was caution and the arm in the vertical position meant clear Thus three indications could be conveyed with just one arm and without the need for a distant arm on the same post 35 In 1924 a committee from the Institution of Railway Signal Engineers discouraged the three position signal however installed examples did last into late 1960s operating in the three position manner 35 Euston to Watford experimental system edit nbsp LMS signal at Willesden Junction The green signal is for the line towards Euston Elephant amp Castle Broad Street via Primrose Hill The route to the left with the red signal leads to the North London Line and was used by trains to Broad Street via Hampstead Heath nbsp LMS Watford DC New Lines Signal Hatch End Station This scheme on the face of it was a fairly standard colour light system with each stop signal which could show red or green having an attendant repeater signal showing red yellow or green the red used only for when the two stop signals on either side were also red What made the scheme unusual was the provision of an automatic calling on facility The stop signals had an additional signal head marker light that featured a red aspect plus a miniature yellow aspect This marker light was mounted part way up the post On repeater signals the marker light was offset to the left hand side of the post to indicate that the stop and proceed rule applied Junction stop signals were provided with two main signal heads one mounted higher than the other Splitting distant signals had three main heads the centre one mounted higher than the other two When a train stopped at a red stop signal its presence on the track started a time delay relay At the conclusion of the time delay the red marker light was extinguished and replaced by the miniature yellow the upper red aspect remained lit The train stop also lowered The calling on aspect authorised the driver to proceed but to be prepared to stop short of another train The scheme was not considered a great success In fact during periods of severe service disruption it was not unusual to see several trains buffer to buffer along the line though this occurred when the line was much busier than now Concern was expressed that similar coloured aspects had different interpretations depending on where on the signal they appeared The system was finally identified for replacement following an accident at Kensal Green when a main line train ran into the back of Bakerloo Line train 36 The driver had apparently mistaken the calling on aspect for a normal yellow aspect the signal was temporarily operating on a maximum yellow due to track side work The indications were that the driver was distracted as his pay slip and its envelope were recovered from the wreckage but this was never proved as the cause It was also suggested that the driver may not even have checked the indications having observed the fall of the train stop The entire line was resignalled to the standard colour light system in 1988 Warning systems editBecause of the propensity for heavy fog in some parts of the British Isles fog signal rules were established on the UK railway system to keep train traffic moving without incurring the severe delays that would be necessary if drivers had to stop or travel slowly up to each signal and read its indication During heavy fog fogsignalmen would be stationed at distant signals with a lantern and detonators small explosive charges that could be strapped to the rail to be exploded by the wheels of a train The fogsignalman s duty was to repeat the indication of the signal using his lantern the semaphore arm was usually obscured by fog and hence invisible to the driver of a moving train If the distant signal was displaying caution warning that a signal ahead was at danger the detonators remained on the rail and the fogsignalman would show a yellow lamp to show caution if the distant signal was clear the detonators would be removed from the rails and a green lamp would be displayed Britain s Great Western Railway introduced the Automatic Train Control ATC system in 1906 This system is the forerunner of today s Automatic Warning System AWS and consists of an electrical system that sounded a bell in the cab as the train approached a signal at clear Power was fed through a metal ramp to a pickup on the underside of the locomotive to power the bell An absence of the electrical voltage on the ramp caused a warning horn to sound in the locomotive s cab The driver then had a set time to acknowledge the warning and start braking his train accordingly If the driver did not acknowledge the warning the brakes would be applied automatically Where this was implemented it did away with the need for fog signalling since the driver could tell the state of the distant signal regardless of his ability to see it The current system of AWS in use on Britain s railways is similar in principle to the Great Western s ATC but does not rely on physical contact between the track equipment and the train instead an inductive system using a combination of permanent and electromagnets is used On passenger lines AWS is now often supplemented by the Train Protection amp Warning System TPWS TPWS functions in two ways Train Stop System TSS will automatically apply the train s brakes in the event of a fitted signal being passed at danger without authority and Over speed Sensor System OSS will automatically apply the train s brakes in the event of a fitted train exceeding a set speed on approach to a fitted signal 37 On parts of the Great Western Mainline and the Chilterns line the trial systems of Automatic Train Protection ATP are still in use These trials were ultimately discontinued in favour of TPWS however the original equipment is still maintained See also editAutomatic Train Protection Pass of Brander stone signals Rule 55 Radio Electronic Token BlockNotes and references edit Track circuit block regulations RSSB Retrieved 2 September 2023 Railsigns uk Track Circuit Block Retrieved 7 March 2017 a b c d e Kichenside G M Williams Alan 1975 1 Development of British Signalling British Railway Signalling 3rd ed London Ian Allan Publishing pp 5 11 ISBN 0 7110 0571 0 Ellis Ian 2010 British Railway Engineering Encyclopedia 2nd ed Lulu Enterprises Incorporated p 47 ISBN 978 1 4461 8190 4 Vanns M A 1997 An Illustrated History of Signalling Ian Allan p 25 ISBN 0 7110 2551 7 Vanns M A 1995 Signalling in the Age of Steam Ian Allan p 80 ISBN 0 7110 2350 6 Online Rulebook Signals handsignals indicators and signs handbook Section 3 Semaphore Signals RSSB Retrieved 27 September 2023 Online Rulebook Signals handsignals indicators and signs handbook section 2 5 Flashing Yellow Aspects RSSB Retrieved 5 September 2020 Lightweight Signalling Handbook PDF Unipart Dorman Unipart Dorman Retrieved 13 June 2021 a b c Online Rulebook Signals handsignals indicators and signs handbook Section 2 7 Position Light Signals RSSB Retrieved 5 September 2020 Online Rulebook Signals handsignals indicators and signs handbook Section 5 1 Limit of Shunt indicators RSSB Retrieved 5 September 2020 Green Jonathon 1987 Dictionary of jargon London Routledge amp Kegan Paul p 212 ISBN 0 7100 9919 3 Vanns Michael 1997 An illustrated History of signalling Shepperton England Ian Allan p 58 ISBN 0 7110 2551 7 Online Rulebook Signals handsignals indicators and signs handbook Section 7 1 Permissible speed indicators Network Rail Retrieved 5 September 2020 Online Rulebook Signals handsignals indicators and signs handbook Section 7 4 Differential permissible speed indicators RSSB Retrieved 5 September 2020 Ellis Ian 2010 British Railway Engineering Encyclopedia 2nd ed Lulu Enterprises Incorporated p 415 ISBN 978 1 4461 8190 4 a b Online Rulebook Signals handsignals indicators and signs handbook Section 7 2 Warning indicators RSSB Retrieved 5 September 2020 a b c Ellis Ian 2010 British Railway Engineering Encyclopedia 2nd ed Lulu Enterprises Incorporated p 497 ISBN 978 1 4461 8190 4 a b c Section 13 Permanent Speed Restriction Signs railsigns uk p 2 Archived from the original on 28 January 2023 Retrieved 29 December 2023 Section 13 Permanent Speed Restriction Signs railsigns uk p 3 Archived from the original on 28 January 2023 Retrieved 29 December 2023 Permanent Speed Restriction Signs railsigns uk Archived from the original on 28 January 2023 a b c d e Online Rulebook Signals handsignals indicators and signs handbook Section 8 Speed restriction signs RSSB Retrieved 5 September 2020 a b c Rule Book Modules Train working TW Preparation and movement of trains Section 3 Attending for and leaving duty RSSB Retrieved 2 September 2023 Section 14 Temporary Speed Restriction Signs railsigns uk p 3 Archived from the original on 18 May 2022 Retrieved 28 December 2023 Section 14 Temporary Speed Restriction Signs railsigns uk p 2 Archived from the original on 18 May 2022 Retrieved 28 December 2023 a b Network Rail Network Rail standardised tasks How to install an Emergency Indicator Retrieved 9 August 2018 dead YouTube link Online Rulebook Signals handsignals indicators and signs handbook Section 5 14 Other Signals Preliminary Route Indicators RSSB Retrieved 5 September 2020 Railway Group Standard GE RT8071 Online Rulebook Signals handsignals indicators and signs handbook section 5 5 Signal Passed At Danger SPAD Indicator a b c d Section 8 Overrun Prevention and Mitigation railsigns uk Archived from the original on 18 May 2022 Retrieved 31 December 2023 Train Protection amp Warning System TPWS railsigns uk Archived from the original on 18 May 2022 Retrieved 31 December 2023 a b Master Rulebook Signals hand signals indicators and signs handbook Section 7 4 Banner repeating and co acting signals RSSB Retrieved 5 September 2020 Co acting Signals and Repeater Signals S amp DJR wrong road signals a b c Kichenside G M Williams Alan 1975 1 Development of British Signalling British Railway Signalling 3rd ed London Ian Allan Publishing pp 12 14 ISBN 0 7110 0571 0 Sawyer D A 22 November 1988 Report on the Collision that occurred on 16th October 1986 at Kensal Green in the London Midland Region British Railways The Railways Archive Department of Transport Retrieved 9 October 2015 Train Protection amp Warning System TPWS RailSigns Retrieved 23 October 2023 External links editRailway Industry Standard RIS 0703 CCS Signalling layout and signal aspect sequence requirements Information on traditional British signalling Docklands Light Railway signalling system History of Railway Signalling in the Derby area Clive Feather s Junction Signalling SimSig UK Network Rail Signalling simulations Comms Design Ltd System developer for RETB Next Generation Radio Electronic Token Block Signalling in the United Kingdom Retrieved from https en wikipedia org w index php title UK railway signalling amp oldid 1219884390, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.