fbpx
Wikipedia

Beltrami–Klein model

In geometry, the Beltrami–Klein model, also called the projective model, Klein disk model, and the Cayley–Klein model, is a model of hyperbolic geometry in which points are represented by the points in the interior of the unit disk (or n-dimensional unit ball) and lines are represented by the chords, straight line segments with ideal endpoints on the boundary sphere.

Many hyperbolic lines through point P not intersecting line a in the Beltrami Klein model
A hyperbolic triheptagonal tiling in a Beltrami–Klein model projection

The Beltrami–Klein model is named after the Italian geometer Eugenio Beltrami and the German Felix Klein while "Cayley" in Cayley–Klein model refers to the English geometer Arthur Cayley.

The Beltrami–Klein model is analogous to the gnomonic projection of spherical geometry, in that geodesics (great circles in spherical geometry) are mapped to straight lines.

This model is not conformal, meaning that angles and circles are distorted, whereas the Poincaré disk model preserves these.

In this model, lines and segments are straight Euclidean segments, whereas in the Poincaré disk model, lines are arcs that meet the boundary orthogonally.

History

This model made its first appearance for hyperbolic geometry in two memoirs of Eugenio Beltrami published in 1868, first for dimension n = 2 and then for general n, these essays proved the equiconsistency of hyperbolic geometry with ordinary Euclidean geometry.[1][2][3]

The papers of Beltrami remained little noticed until recently and the model was named after Klein ("The Klein disk model"). This happened as follows. In 1859 Arthur Cayley used the cross-ratio definition of angle due to Laguerre to show how Euclidean geometry could be defined using projective geometry.[4] His definition of distance later became known as the Cayley metric.

In 1869, the young (twenty-year-old) Felix Klein became acquainted with Cayley's work. He recalled that in 1870 he gave a talk on the work of Cayley at the seminar of Weierstrass and he wrote:

"I finished with a question whether there might exist a connection between the ideas of Cayley and Lobachevsky. I was given the answer that these two systems were conceptually widely separated."[5]

Later, Felix Klein realized that Cayley's ideas give rise to a projective model of the non-Euclidean plane.[6]

As Klein puts it, "I allowed myself to be convinced by these objections and put aside this already mature idea." However, in 1871, he returned to this idea, formulated it mathematically, and published it.[7]

Distance formula

The distance function for the Beltrami–Klein model is a Cayley–Klein metric. Given two distinct points p and q in the open unit ball, the unique straight line connecting them intersects the boundary at two ideal points, a and b, label them so that the points are, in order, a, p, q, b and |aq| > |ap| and |pb| > |qb|.

The hyperbolic distance between p and q is then:  

The vertical bars indicate Euclidean distances between the points in the model, ln is the natural logarithm and the factor of one half is needed to give the model the standard curvature of −1.

When one of the points is the origin and Euclidean distance between the points is r then the hyperbolic distance is:

 

where artanh is the inverse hyperbolic function of the hyperbolic tangent.

The Klein disk model

 
Lines in the projective model of the hyperbolic plane

In two dimensions the Beltrami–Klein model is called the Klein disk model. It is a disk and the inside of the disk is a model of the entire hyperbolic plane. Lines in this model are represented by chords of the boundary circle (also called the absolute). The points on the boundary circle are called ideal points; although well defined, they do not belong to the hyperbolic plane. Neither do points outside the disk, which are sometimes called ultra ideal points.

The model is not conformal, meaning that angles are distorted, and circles on the hyperbolic plane are in general not circular in the model. Only circles that have their centre at the centre of the boundary circle are not distorted. All other circles are distorted, as are horocycles and hypercycles

Properties

Chords that meet on the boundary circle are limiting parallel lines.

Two chords are perpendicular if, when extended outside the disk, each goes through the pole of the other. (The pole of a chord is an ultra ideal point: the point outside the disk where the tangents to the disk at the endpoints of the chord meet.) Chords that go through the centre of the disk have their pole at infinity, orthogonal to the direction of the chord (this implies that right angles on diameters are not distorted).

Compass and straightedge constructions

Here is how one can use compass and straightedge constructions in the model to achieve the effect of the basic constructions in the hyperbolic plane.

  • The pole of a line. While the pole is not a point in the hyperbolic plane (it is an ultra ideal point) most constructions will use the pole of a line in one or more ways.
For a line: construct the tangents to the boundary circle through the ideal (end) points of the line. the point where these tangents intersect is the pole.
For diameters of the disk: the pole is at infinity perpendicular to the diameter.
When the line is a diameter of the disk then the perpendicular is the chord that is (Euclidean) perpendicular to that diameter and going through the given point.
  • To find the midpoint of given segment  : Draw the lines through A and B that are perpendicular to  . (see above) Draw the lines connecting the ideal points of these lines, two of these lines will intersect the segment   and will do this at the same point. This point is the (hyperbolic) midpoint of .[8]
  • To bisect a given angle  : Draw the rays AB and AC. Draw tangents to the circle where the rays intersect the boundary circle. Draw a line from A to the point where the tangents intersect. The part of this line between A and the boundary circle is the bisector.[9]
  • The common perpendicular of two lines is the chord that when extended goes through both poles of the chords.
When one of the chords is a diameter of the boundary circle then the common perpendicular is the chord that is perpendicular to the diameter and that when lengthened goes through the pole of the other chord.
  • To reflect a point P in a line l: From a point R on the line l draw the ray through P. Let X be the ideal point where the ray intersects the absolute. Draw the ray from the pole of line l through X, let Y be another ideal point that intersects the ray. Draw the segment RY. The reflection of point P is the point where the ray from the pole of line l through P intersects RY.[10]

Circles, hypercycles and horocycles

 
Circles in the Klein-Beltrami model of hyperbolic geometry.

While lines in the hyperbolic plane are easy to draw in the Klein disk model, it is not the same with circles, hypercycles and horocycles.

Circles (the set of all points in a plane that are at a given distance from a given point, its center) in the model become ellipses increasingly flattened as they are nearer to the edge. Also angles in the Klein disk model are deformed.

For constructions in the hyperbolic plane that contain circles, hypercycles, horocycles or non right angles it is better to use the Poincaré disk model or the Poincaré half-plane model.

Relation to the Poincaré disk model

 
Combined projections from the Klein disk model (yellow) to the Poincaré disk model (red) via the hemisphere model (blue)
 
The Beltrami–Klein model (K in the picture) is an orthographic projection from the hemispherical model and a gnomonic projection of the hyperboloid model (Hy) with the center of the hyperboloid (O) as its center.

Both the Poincaré disk model and the Klein disk model are models of the hyperbolic plane. An advantage of the Poincaré disk model is that it is conformal (circles and angles are not distorted); a disadvantage is that lines of the geometry are circular arcs orthogonal to the boundary circle of the disk.

The two models are related through a projection on or from the hemisphere model. The Klein model is an orthographic projection to the hemisphere model while the Poincaré disk model is a stereographic projection.

When projecting the same lines in both models on one disk both lines go through the same two ideal points. (the ideal points remain on the same spot) also the pole of the chord is the centre of the circle that contains the arc.

If P is a point a distance   from the centre of the unit circle in the Beltrami–Klein model, then the corresponding point on the Poincaré disk model a distance of u on the same radius:

 

Conversely, If P is a point a distance   from the centre of the unit circle in the Poincaré disk model, then the corresponding point of the Beltrami–Klein model is a distance of s on the same radius:

 

Relation of the disk model to the hyperboloid model

Both the hyperboloid model and the Klein disk model are models of the hyperbolic plane.

The Klein disk (K, in the picture) is a gnomonic projection of the hyperboloid model (Hy) with as center the center of the hyperboloid (O) and the projection plane tangent to the nearest point of the hyperboloid.[11]

Distance and metric tensor

 
The regular hyperbolic dodecahedral honeycomb, {5,3,4}

Given two distinct points U and V in the open unit ball of the model in Euclidean space, the unique straight line connecting them intersects the unit sphere at two ideal points A and B, labeled so that the points are, in order along the line, A, U, V, B. Taking the centre of the unit ball of the model as the origin, and assigning position vectors u, v, a, b respectively to the points U, V, A, B, we have that that av‖ > ‖au and ub‖ > ‖vb, where ‖ · ‖ denotes the Euclidean norm. Then the distance between U and V in the modelled hyperbolic space is expressed as

 

where the factor of one half is needed to make the curvature −1.

The associated metric tensor is given by[12][13]

 

Relation to the hyperboloid model

 
Partial {7,3} hyperbolic tiling of the hyperboloid as seen in Beltrami-Klein perspective.
Animation of partial {7,3} hyperbolic tiling of the hyperboloid rotating into the Beltrami-Klein perspective.

The hyperboloid model is a model of hyperbolic geometry within (n + 1)-dimensional Minkowski space. The Minkowski inner product is given by

 

and the norm by  . The hyperbolic plane is embedded in this space as the vectors x with x‖ = 1 and x0 (the "timelike component") positive. The intrinsic distance (in the embedding) between points u and v is then given by

 

This may also be written in the homogeneous form

 

which allows the vectors to be rescaled for convenience.

The Beltrami–Klein model is obtained from the hyperboloid model by rescaling all vectors so that the timelike component is 1, that is, by projecting the hyperboloid embedding through the origin onto the plane x0 = 1. The distance function, in its homogeneous form, is unchanged. Since the intrinsic lines (geodesics) of the hyperboloid model are the intersection of the embedding with planes through the Minkowski origin, the intrinsic lines of the Beltrami–Klein model are the chords of the sphere.

Relation to the Poincaré ball model

Both the Poincaré ball model and the Beltrami–Klein model are models of the n-dimensional hyperbolic space in the n-dimensional unit ball in Rn. If   is a vector of norm less than one representing a point of the Poincaré disk model, then the corresponding point of the Beltrami–Klein model is given by

 

Conversely, from a vector   of norm less than one representing a point of the Beltrami–Klein model, the corresponding point of the Poincaré disk model is given by

 

Given two points on the boundary of the unit disk, which are traditionally called ideal points, the straight line connecting them in the Beltrami–Klein model is the chord between them, while in the corresponding Poincaré model the line is a circular arc on the two-dimensional subspace generated by the two boundary point vectors, meeting the boundary of the ball at right angles. The two models are related through a projection from the center of the disk; a ray from the center passing through a point of one model line passes through the corresponding point of the line in the other model.

See also

Notes

  1. ^ Beltrami, Eugenio (1868). "Saggio di interpretazione della geometria non-euclidea". Giornale di Mathematiche. VI: 285–315.
  2. ^ Beltrami, Eugenio (1868). "Teoria fondamentale degli spazii di curvatura costante". Annali di Matematica Pura ed Applicata. Series II. 2: 232–255. doi:10.1007/BF02419615.
  3. ^ Stillwell, John (1999). Sources of hyperbolic geometry (2. print. ed.). Providence: American mathematical society. pp. 7–62. ISBN 0821809229.
  4. ^ Cayley, Arthur (1859). "A Sixth Memoire upon Quantics". Philosophical Transactions of the Royal Society. 159: 61–91. doi:10.1098/rstl.1859.0004.
  5. ^ Klein, Felix (1926). Vorlesungen über die Entwicklung der Mathematik im 19. Jahrhundert. Teil 1. Springer. p. 152.
  6. ^ Klein, Felix (1871). "Ueber die sogenannte Nicht-Euklidische Geometrie". Mathematische Annalen. 4 (4): 573–625. doi:10.1007/BF02100583.
  7. ^ Shafarevich, I. R.; A. O. Remizov (2012). Linear Algebra and Geometry. Springer. ISBN 978-3-642-30993-9.
  8. ^ hyperbolic toolbox
  9. ^ hyperbolic toolbox
  10. ^ Greenberg, Marvin Jay (2003). Euclidean and non-Euclidean geometries : development and history (3rd ed.). New York: Freeman. pp. 272–273. ISBN 9780716724469.
  11. ^ Hwang, Andrew D. "Analogy of spherical and hyperbolic geometry projection". Stack Exchange. Retrieved 1 January 2017.
  12. ^ J. W. Cannon; W. J. Floyd; R. Kenyon; W. R. Parry. (PDF). Archived from the original (PDF) on 2020-11-01.
  13. ^ answer from Stack Exchange

References

  • Luis Santaló (1961), Geometrias no Euclidianas, EUDEBA.
  • Stahl, Saul (2007), A Gateway to Modern Geometry: The Poincare Half-Plane (2nd ed.), Jones & Bartlett Learning, ISBN 978-0-7637-5381-8
  • Nielsen, Frank; Nock, Richard (2009), "Hyperbolic Voronoi diagrams made easy", 2010 International Conference on Computational Science and Its Applications, pp. 74–80, arXiv:0903.3287, doi:10.1109/ICCSA.2010.37, ISBN 978-1-4244-6461-6

beltrami, klein, model, geometry, also, called, projective, model, klein, disk, model, cayley, klein, model, model, hyperbolic, geometry, which, points, represented, points, interior, unit, disk, dimensional, unit, ball, lines, represented, chords, straight, l. In geometry the Beltrami Klein model also called the projective model Klein disk model and the Cayley Klein model is a model of hyperbolic geometry in which points are represented by the points in the interior of the unit disk or n dimensional unit ball and lines are represented by the chords straight line segments with ideal endpoints on the boundary sphere Many hyperbolic lines through point P not intersecting line a in the Beltrami Klein model A hyperbolic triheptagonal tiling in a Beltrami Klein model projection The Beltrami Klein model is named after the Italian geometer Eugenio Beltrami and the German Felix Klein while Cayley in Cayley Klein model refers to the English geometer Arthur Cayley The Beltrami Klein model is analogous to the gnomonic projection of spherical geometry in that geodesics great circles in spherical geometry are mapped to straight lines This model is not conformal meaning that angles and circles are distorted whereas the Poincare disk model preserves these In this model lines and segments are straight Euclidean segments whereas in the Poincare disk model lines are arcs that meet the boundary orthogonally Contents 1 History 2 Distance formula 3 The Klein disk model 3 1 Properties 3 2 Compass and straightedge constructions 3 3 Circles hypercycles and horocycles 3 4 Relation to the Poincare disk model 3 5 Relation of the disk model to the hyperboloid model 4 Distance and metric tensor 5 Relation to the hyperboloid model 6 Relation to the Poincare ball model 7 See also 8 Notes 9 ReferencesHistory EditSee also Cayley Klein metric This model made its first appearance for hyperbolic geometry in two memoirs of Eugenio Beltrami published in 1868 first for dimension n 2 and then for general n these essays proved the equiconsistency of hyperbolic geometry with ordinary Euclidean geometry 1 2 3 The papers of Beltrami remained little noticed until recently and the model was named after Klein The Klein disk model This happened as follows In 1859 Arthur Cayley used the cross ratio definition of angle due to Laguerre to show how Euclidean geometry could be defined using projective geometry 4 His definition of distance later became known as the Cayley metric In 1869 the young twenty year old Felix Klein became acquainted with Cayley s work He recalled that in 1870 he gave a talk on the work of Cayley at the seminar of Weierstrass and he wrote I finished with a question whether there might exist a connection between the ideas of Cayley and Lobachevsky I was given the answer that these two systems were conceptually widely separated 5 Later Felix Klein realized that Cayley s ideas give rise to a projective model of the non Euclidean plane 6 As Klein puts it I allowed myself to be convinced by these objections and put aside this already mature idea However in 1871 he returned to this idea formulated it mathematically and published it 7 Distance formula EditThe distance function for the Beltrami Klein model is a Cayley Klein metric Given two distinct points p and q in the open unit ball the unique straight line connecting them intersects the boundary at two ideal points a and b label them so that the points are in order a p q b and aq gt ap and pb gt qb The hyperbolic distance between p and q is then d p q 1 2 ln a q p b a p q b displaystyle d p q frac 1 2 ln frac left aq right left pb right left ap right left qb right The vertical bars indicate Euclidean distances between the points in the model ln is the natural logarithm and the factor of one half is needed to give the model the standard curvature of 1 When one of the points is the origin and Euclidean distance between the points is r then the hyperbolic distance is 1 2 ln 1 r 1 r artanh r displaystyle frac 1 2 ln left frac 1 r 1 r right operatorname artanh r where artanh is the inverse hyperbolic function of the hyperbolic tangent The Klein disk model Edit Lines in the projective model of the hyperbolic plane In two dimensions the Beltrami Klein model is called the Klein disk model It is a disk and the inside of the disk is a model of the entire hyperbolic plane Lines in this model are represented by chords of the boundary circle also called the absolute The points on the boundary circle are called ideal points although well defined they do not belong to the hyperbolic plane Neither do points outside the disk which are sometimes called ultra ideal points The model is not conformal meaning that angles are distorted and circles on the hyperbolic plane are in general not circular in the model Only circles that have their centre at the centre of the boundary circle are not distorted All other circles are distorted as are horocycles and hypercycles Properties Edit Chords that meet on the boundary circle are limiting parallel lines Two chords are perpendicular if when extended outside the disk each goes through the pole of the other The pole of a chord is an ultra ideal point the point outside the disk where the tangents to the disk at the endpoints of the chord meet Chords that go through the centre of the disk have their pole at infinity orthogonal to the direction of the chord this implies that right angles on diameters are not distorted Compass and straightedge constructions Edit See also Compass and straightedge construction Here is how one can use compass and straightedge constructions in the model to achieve the effect of the basic constructions in the hyperbolic plane The pole of a line While the pole is not a point in the hyperbolic plane it is an ultra ideal point most constructions will use the pole of a line in one or more ways For a line construct the tangents to the boundary circle through the ideal end points of the line the point where these tangents intersect is the pole For diameters of the disk the pole is at infinity perpendicular to the diameter To construct a perpendicular to a given line through a given point draw the ray from the pole of the line through the given point The part of the ray that is inside the disk is the perpendicular When the line is a diameter of the disk then the perpendicular is the chord that is Euclidean perpendicular to that diameter and going through the given point To find the midpoint of given segment A B displaystyle AB Draw the lines through A and B that are perpendicular to A B displaystyle AB see above Draw the lines connecting the ideal points of these lines two of these lines will intersect the segment A B displaystyle AB and will do this at the same point This point is the hyperbolic midpoint ofA B displaystyle AB 8 To bisect a given angle B A C displaystyle angle BAC Draw the rays AB and AC Draw tangents to the circle where the rays intersect the boundary circle Draw a line from A to the point where the tangents intersect The part of this line between A and the boundary circle is the bisector 9 The common perpendicular of two lines is the chord that when extended goes through both poles of the chords When one of the chords is a diameter of the boundary circle then the common perpendicular is the chord that is perpendicular to the diameter and that when lengthened goes through the pole of the other chord To reflect a point P in a line l From a point R on the line l draw the ray through P Let X be the ideal point where the ray intersects the absolute Draw the ray from the pole of line l through X let Y be another ideal point that intersects the ray Draw the segment RY The reflection of point P is the point where the ray from the pole of line l through P intersects RY 10 Circles hypercycles and horocycles Edit Circles in the Klein Beltrami model of hyperbolic geometry While lines in the hyperbolic plane are easy to draw in the Klein disk model it is not the same with circles hypercycles and horocycles Circles the set of all points in a plane that are at a given distance from a given point its center in the model become ellipses increasingly flattened as they are nearer to the edge Also angles in the Klein disk model are deformed For constructions in the hyperbolic plane that contain circles hypercycles horocycles or non right angles it is better to use the Poincare disk model or the Poincare half plane model Relation to the Poincare disk model Edit Main article Hyperbolic geometry Connection between the models Combined projections from the Klein disk model yellow to the Poincare disk model red via the hemisphere model blue The Beltrami Klein model K in the picture is an orthographic projection from the hemispherical model and a gnomonic projection of the hyperboloid model Hy with the center of the hyperboloid O as its center Both the Poincare disk model and the Klein disk model are models of the hyperbolic plane An advantage of the Poincare disk model is that it is conformal circles and angles are not distorted a disadvantage is that lines of the geometry are circular arcs orthogonal to the boundary circle of the disk The two models are related through a projection on or from the hemisphere model The Klein model is an orthographic projection to the hemisphere model while the Poincare disk model is a stereographic projection When projecting the same lines in both models on one disk both lines go through the same two ideal points the ideal points remain on the same spot also the pole of the chord is the centre of the circle that contains the arc If P is a point a distance s displaystyle s from the centre of the unit circle in the Beltrami Klein model then the corresponding point on the Poincare disk model a distance of u on the same radius u s 1 1 s 2 1 1 s 2 s displaystyle u frac s 1 sqrt 1 s 2 frac left 1 sqrt 1 s 2 right s Conversely If P is a point a distance u displaystyle u from the centre of the unit circle in the Poincare disk model then the corresponding point of the Beltrami Klein model is a distance of s on the same radius s 2 u 1 u 2 displaystyle s frac 2u 1 u 2 Relation of the disk model to the hyperboloid model Edit Main article Hyperbolic geometry Connection between the models Both the hyperboloid model and the Klein disk model are models of the hyperbolic plane The Klein disk K in the picture is a gnomonic projection of the hyperboloid model Hy with as center the center of the hyperboloid O and the projection plane tangent to the nearest point of the hyperboloid 11 Distance and metric tensor Edit The regular hyperbolic dodecahedral honeycomb 5 3 4 Given two distinct points U and V in the open unit ball of the model in Euclidean space the unique straight line connecting them intersects the unit sphere at two ideal points A and B labeled so that the points are in order along the line A U V B Taking the centre of the unit ball of the model as the origin and assigning position vectors u v a b respectively to the points U V A B we have that that a v gt a u and u b gt v b where denotes the Euclidean norm Then the distance between U and V in the modelled hyperbolic space is expressed as d u v 1 2 ln v a b u u a b v displaystyle d mathbf u mathbf v frac 1 2 ln frac left mathbf v mathbf a right left mathbf b mathbf u right left mathbf u mathbf a right left mathbf b mathbf v right where the factor of one half is needed to make the curvature 1 The associated metric tensor is given by 12 13 d s 2 g x d x d x 2 1 x 2 x d x 2 1 x 2 2 1 x 2 d x 2 x d x 2 1 x 2 2 displaystyle ds 2 g mathbf x d mathbf x frac left d mathbf x right 2 1 left mathbf x right 2 frac mathbf x cdot d mathbf x 2 bigl 1 left mathbf x right 2 bigr 2 frac 1 left mathbf x right 2 left d mathbf x right 2 mathbf x cdot d mathbf x 2 bigl 1 left mathbf x right 2 bigr 2 Relation to the hyperboloid model Edit Partial 7 3 hyperbolic tiling of the hyperboloid as seen in Beltrami Klein perspective source source source source source source source source source source source source Animation of partial 7 3 hyperbolic tiling of the hyperboloid rotating into the Beltrami Klein perspective The hyperboloid model is a model of hyperbolic geometry within n 1 dimensional Minkowski space The Minkowski inner product is given by x y x 0 y 0 x 1 y 1 x n y n displaystyle mathbf x cdot mathbf y x 0 y 0 x 1 y 1 cdots x n y n and the norm by x x x displaystyle left mathbf x right sqrt mathbf x cdot mathbf x The hyperbolic plane is embedded in this space as the vectors x with x 1 and x0 the timelike component positive The intrinsic distance in the embedding between points u and v is then given by d u v arcosh u v displaystyle d mathbf u mathbf v operatorname arcosh mathbf u cdot mathbf v This may also be written in the homogeneous form d u v arcosh u u v v displaystyle d mathbf u mathbf v operatorname arcosh left frac mathbf u left mathbf u right cdot frac mathbf v left mathbf v right right which allows the vectors to be rescaled for convenience The Beltrami Klein model is obtained from the hyperboloid model by rescaling all vectors so that the timelike component is 1 that is by projecting the hyperboloid embedding through the origin onto the plane x0 1 The distance function in its homogeneous form is unchanged Since the intrinsic lines geodesics of the hyperboloid model are the intersection of the embedding with planes through the Minkowski origin the intrinsic lines of the Beltrami Klein model are the chords of the sphere Relation to the Poincare ball model EditBoth the Poincare ball model and the Beltrami Klein model are models of the n dimensional hyperbolic space in the n dimensional unit ball in Rn If u displaystyle u is a vector of norm less than one representing a point of the Poincare disk model then the corresponding point of the Beltrami Klein model is given by s 2 u 1 u u displaystyle s frac 2u 1 u cdot u Conversely from a vector s displaystyle s of norm less than one representing a point of the Beltrami Klein model the corresponding point of the Poincare disk model is given by u s 1 1 s s 1 1 s s s s s displaystyle u frac s 1 sqrt 1 s cdot s frac left 1 sqrt 1 s cdot s right s s cdot s Given two points on the boundary of the unit disk which are traditionally called ideal points the straight line connecting them in the Beltrami Klein model is the chord between them while in the corresponding Poincare model the line is a circular arc on the two dimensional subspace generated by the two boundary point vectors meeting the boundary of the ball at right angles The two models are related through a projection from the center of the disk a ray from the center passing through a point of one model line passes through the corresponding point of the line in the other model See also Edit Wikimedia Commons has media related to Beltrami Klein models Poincare half plane model Poincare disk model Poincare metric Inversive geometryNotes Edit Beltrami Eugenio 1868 Saggio di interpretazione della geometria non euclidea Giornale di Mathematiche VI 285 315 Beltrami Eugenio 1868 Teoria fondamentale degli spazii di curvatura costante Annali di Matematica Pura ed Applicata Series II 2 232 255 doi 10 1007 BF02419615 Stillwell John 1999 Sources of hyperbolic geometry 2 print ed Providence American mathematical society pp 7 62 ISBN 0821809229 Cayley Arthur 1859 A Sixth Memoire upon Quantics Philosophical Transactions of the Royal Society 159 61 91 doi 10 1098 rstl 1859 0004 Klein Felix 1926 Vorlesungen uber die Entwicklung der Mathematik im 19 Jahrhundert Teil 1 Springer p 152 Klein Felix 1871 Ueber die sogenannte Nicht Euklidische Geometrie Mathematische Annalen 4 4 573 625 doi 10 1007 BF02100583 Shafarevich I R A O Remizov 2012 Linear Algebra and Geometry Springer ISBN 978 3 642 30993 9 hyperbolic toolbox hyperbolic toolbox Greenberg Marvin Jay 2003 Euclidean and non Euclidean geometries development and history 3rd ed New York Freeman pp 272 273 ISBN 9780716724469 Hwang Andrew D Analogy of spherical and hyperbolic geometry projection Stack Exchange Retrieved 1 January 2017 J W Cannon W J Floyd R Kenyon W R Parry Hyperbolic Geometry PDF Archived from the original PDF on 2020 11 01 answer from Stack ExchangeReferences EditLuis Santalo 1961 Geometrias no Euclidianas EUDEBA Stahl Saul 2007 A Gateway to Modern Geometry The Poincare Half Plane 2nd ed Jones amp Bartlett Learning ISBN 978 0 7637 5381 8 Nielsen Frank Nock Richard 2009 Hyperbolic Voronoi diagrams made easy 2010 International Conference on Computational Science and Its Applications pp 74 80 arXiv 0903 3287 doi 10 1109 ICCSA 2010 37 ISBN 978 1 4244 6461 6 Retrieved from https en wikipedia org w index php title Beltrami Klein model amp oldid 1153302476, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.