fbpx
Wikipedia

Atom transfer radical polymerization

Atom transfer radical polymerization (ATRP) is an example of a reversible-deactivation radical polymerization. Like its counterpart, ATRA, or atom transfer radical addition, ATRP is a means of forming a carbon-carbon bond with a transition metal catalyst. Polymerization from this method is called atom transfer radical addition polymerization (ATRAP). As the name implies, the atom transfer step is crucial in the reaction responsible for uniform polymer chain growth. ATRP (or transition metal-mediated living radical polymerization) was independently discovered by Mitsuo Sawamoto[1] and by Krzysztof Matyjaszewski and Jin-Shan Wang in 1995.[2][3]

The following scheme presents a typical ATRP reaction:
General ATRP reaction. A. Initiation. B. Equilibrium with dormant species. C. Propagation
IUPAC definition for ATRP

Controlled reversible-deactivation radical polymerization in which the deactivation
of the radicals involves reversible atom transfer or reversible group transfer catalyzed usually,
though not exclusively, by transition-metal complexes.[4]

Overview of ATRP edit

ATRP usually employs a transition metal complex as the catalyst with an alkyl halide as the initiator (R-X). Various transition metal complexes, namely those of Cu, Fe, Ru, Ni, and Os, have been employed as catalysts for ATRP. In an ATRP process, the dormant species is activated by the transition metal complex to generate radicals via one electron transfer process. Simultaneously the transition metal is oxidized to higher oxidation state. This reversible process rapidly establishes an equilibrium that is predominately shifted to the side with very low radical concentrations. The number of polymer chains is determined by the number of initiators. Each growing chain has the same probability to propagate with monomers to form living/dormant polymer chains (R-Pn-X). As a result, polymers with similar molecular weights and narrow molecular weight distribution can be prepared.

ATRP reactions are very robust in that they are tolerant of many functional groups like allyl, amino, epoxy, hydroxy, and vinyl groups present in either the monomer or the initiator.[5] ATRP methods are also advantageous due to the ease of preparation, commercially available and inexpensive catalysts (copper complexes), pyridine-based ligands, and initiators (alkyl halides).[6]

 
The ATRP with styrene. If all the styrene is reacted (the conversion is 100%) the polymer will have 100 units of styrene built into it. PMDETA stands for N,N,N′,N′′,N′′-pentamethyldiethylenetriamine.

Components of normal ATRP edit

There are five important variable components of atom transfer radical polymerizations. They are the monomer, initiator, catalyst, ligand, and solvent. The following section breaks down the contributions of each component to the overall polymerization.

Monomer edit

Monomers typically used in ATRP are molecules with substituents that can stabilize the propagating radicals; for example, styrenes, (meth)acrylates, (meth)acrylamides, and acrylonitrile.[7] ATRP is successful at leading to polymers of high number average molecular weight and low dispersity when the concentration of the propagating radical balances the rate of radical termination. Yet, the propagating rate is unique to each individual monomer. Therefore, it is important that the other components of the polymerization (initiator, catalyst, ligand, and solvent) are optimized in order for the concentration of the dormant species to be greater than that of the propagating radical while being low enough as to prevent slowing down or halting the reaction.[8][9]

Initiator edit

The number of growing polymer chains is determined by the initiator. To ensure a low polydispersity and a controlled polymerization, the rate of initiation must be as fast or preferably faster than the rate of propagation [10] Ideally, all chains will be initiated in a very short period of time and will be propagated at the same rate. Initiators are typically chosen to be alkyl halides whose frameworks are similar to that of the propagating radical.[8] Alkyl halides such as alkyl bromides are more reactive than alkyl chlorides. Both offer good molecular weight control.[8][9] The shape or structure of the initiator influences polymer architecture. For example, initiators with multiple alkyl halide groups on a single core can lead to a star-like polymer shape.[11] Furthermore, α-functionalized ATRP initiators can be used to synthesize hetero-telechelic polymers with a variety of chain-end groups[12]

 
Illustration of a star initiator for ATRP.

Catalyst edit

The catalyst is the most important component of ATRP because it determines the equilibrium constant between the active and dormant species. This equilibrium determines the polymerization rate. An equilibrium constant that is too small may inhibit or slow the polymerization while an equilibrium constant that is too large leads to a wide distribution of chain lengths.[9]

There are several requirements for the metal catalyst:

  1. There needs to be two accessible oxidation states that are differentiated by one electron
  2. The metal center needs to have reasonable affinity for halogens
  3. The coordination sphere of the metal needs to be expandable when it is oxidized as to accommodate the halogen
  4. The transition metal catalyst should not lead to significant side reactions, such as irreversible coupling with the propagating radicals and catalytic radical termination

The most studied catalysts are those that include copper, which has shown the most versatility with successful polymerizations for a wide selection of monomers.

Ligand edit

One of the most important aspects in an ATRP reaction is the choice of ligand which is used in combination with the traditionally copper halide catalyst to form the catalyst complex. The main function of the ligand is to solubilize the copper halide in whichever solvent is chosen and to adjust the redox potential of the copper.[13] This changes the activity and dynamics of the halogen exchange reaction and subsequent activation and deactivation of the polymer chains during polymerization, therefore greatly affecting the kinetics of the reaction and the degree of control over the polymerization. Different ligands should be chosen based on the activity of the monomer and the choice of metal for the catalyst. As copper halides are primarily used as the catalyst, amine based ligands are most commonly chosen. Ligands with higher activities are being investigated as ways to potentially decrease the concentration of catalyst in the reaction since a more active catalyst complex would lead to a higher concentration of deactivator in the reaction. However, a too active catalyst can lead to a loss of control and increase the polydispersity of the resulting polymer.

Solvents edit

Toluene, 1,4-dioxane, xylene, anisole, DMF, DMSO, water, methanol, acetonitrile, or even the monomer itself (described as a bulk polymerization) are commonly used.

Kinetics of normal ATRP edit

  • Reactions in atom transfer radical polymerization
    Initiation
     
    Quasi-steady state
     
  • Other chain breaking reactions ( ) should also be considered.

ATRP equilibrium constant edit

The radical concentration in normal ATRP can be calculated via the following equation:

 

It is important to know the KATRP value to adjust the radical concentration. The KATRP value depends on the homo-cleavage energy of the alkyl halide and the redox potential of the Cu catalyst with different ligands. Given two alkyl halides (R1-X and R2-X) and two ligands (L1 and L2), there will be four combinations between different alkyl halides and ligands. Let KijATRP refer to the KATRP value for Ri-X and Lj. If we know three of these four combinations, the fourth one can be calculated as:

 

The KATRP values for different alkyl halides and different Cu catalysts can be found in literature.[14]

Solvents have significant effects on the KATRP values. The KATRP value increases dramatically with the polarity of the solvent for the same alkyl halide and the same Cu catalyst.[15] The polymerization must take place in solvent/monomer mixture, which changes to solvent/monomer/polymer mixture gradually. The KATRP values could change 10000 times by switching the reaction medium from pure methyl acrylate to pure dimethyl sulfoxide.[16]

Activation and deactivation rate coefficients edit

Deactivation rate coefficient, kd, values must be sufficiently large to obtain low dispersity. The direct measurement of kd is difficult though not impossible. In most cases, kd may be calculated from known KATRP and ka.[14][17][18] Cu complexes providing very low kd values are not recommended for use in ATRP reactions.

Retention of chain end functionality edit

 

 
Halogen Conservation in Atom Transfer Radical Polymerization

High level retention of chain end functionality is typically desired. However, the determination of the loss of chain end functionality based on 1H NMR and mass spectroscopy methods cannot provide precise values. As a result, it is difficult to identify the contributions of different chain breaking reactions in ATRP. One simple rule in ATRP comprises the principle of halogen conservation.[19] Halogen conservation means the total amount of halogen in the reaction systems must remain as a constant. From this rule, the level of retention of chain end functionality can be precisely determined in many cases. The precise determination of the loss of chain end functionality enabled further investigation of the chain breaking reactions in ATRP.[20]

Advantages and disadvantages of ATRP edit

Advantages edit

ATRP enables the polymerization of a wide variety of monomers with different chemical functionalities, proving to be more tolerant of these functionalities than ionic polymerizations. It provides increased control of molecular weight, molecular architecture and polymer composition while maintaining a low polydispersity (1.05-1.2). The halogen remaining at the end of the polymer chain after polymerization allows for facile post-polymerization chain-end modification into different reactive functional groups. The use of multi-functional initiators facilitates the synthesis of lower-arm star polymers and telechelic polymers. External visible light stimulation ATRP has a high responding speed and excellent functional group tolerance.[21]

Disadvantages edit

The most significant drawback of ATRP is the high concentrations of catalyst required for the reaction. This catalyst standardly consists of a copper halide and an amine-based ligand. The removal of the copper from the polymer after polymerization is often tedious and expensive, limiting ATRP's use in the commercial sector.[22] However, researchers are currently developing methods which would limit the necessity of the catalyst concentration to ppm. ATRP is also a traditionally air-sensitive reaction normally requiring freeze-pump thaw cycles. However, techniques such as Activator Generated by Electron Transfer (AGET) ATRP provide potential alternatives which are not air-sensitive.[23] A final disadvantage is the difficulty of conducting ATRP in aqueous media.

Different ATRP methods edit

Activator regeneration ATRP methods edit

In a normal ATRP, the concentration of radicals is determined by the KATRP value, concentration of dormant species, and the [CuI]/[CuII] ratio. In principle, the total amount of Cu catalyst should not influence polymerization kinetics. However, the loss of chain end functionality slowly but irreversibly converts CuI to CuII. Thus initial [CuI]/[I] ratios are typically 0.1 to 1. When very low concentrations of catalysts are used, usually at the ppm level, activator regeneration processes are generally required to compensate the loss of CEF and regenerate a sufficient amount of CuI to continue the polymerization. Several activator regeneration ATRP methods were developed, namely ICAR ATRP, ARGET ATRP, SARA ATRP, eATRP, and photoinduced ATRP. The activator regeneration process is introduced to compensate the loss of chain end functionality, thus the cumulative amount of activator regeneration should roughly equal the total amount of the loss of chain end functionality.

 
Activator regeneration Atom Transfer Radical Polymerization

ICAR ATRP edit

Initiators for continuous activator regeneration (ICAR) is a technique that uses conventional radical initiators to continuously regenerate the activator, lowering its required concentration from thousands of ppm to <100 ppm; making it an industrially relevant technique.

ARGET ATRP edit

Activators regenerated by electron transfer (ARGET) employs non-radical forming reducing agents for regeneration of CuI. A good reducing agent (e.g. hydrazine, phenols, sugars, ascorbic acid) should only react with CuII and not with radicals or other reagents in the reaction mixture.

SARA ATRP edit

A typical SARA ATRP employs Cu0 as both supplemental activator and reducing agent (SARA). Cu0 can activate alkyl halide directly but slowly. Cu0 can also reduce CuII to CuI. Both processes help to regenerate CuI activator. Other zerovalent metals, such as Mg, Zn, and Fe, have also been employed for Cu-based SARA ATRP.

eATRP edit

In eATRP the activator CuI is regenerated via electrochemical process. The development of eATRP enables precise control of the reduction process and external regulation of the polymerization. In an eATRP process, the redox reaction involves two electrodes. The CuII species is reduced to CuI at the cathode. The anode compartment is typically separated from the polymerization environment by a glass frit and a conductive gel. Alternatively, a sacrificial aluminum counter electrode can be used, which is directly immersed in the reaction mixture.

Photoinduced ATRP edit

The direct photo reduction of transition metal catalysts in ATRP and/or photo assistant activation of alkyl halide is particularly interesting because such a procedure will allow performing of ATRP with ppm level of catalysts without any other additives.

Other ATRP methods edit

Reverse ATRP edit

In reverse ATRP, the catalyst is added in its higher oxidation state. Chains are activated by conventional radical initiators (e.g. AIBN) and deactivated by the transition metal. The source of transferable halogen is the copper salt, so this must be present in concentrations comparable to the transition metal.

SR&NI ATRP edit

A mixture of radical initiator and active (lower oxidation state) catalyst allows for the creation of block copolymers (contaminated with homopolymer) which is impossible using standard reverse ATRP. This is called SR&NI (simultaneous reverse and normal initiation ATRP).

AGET ATRP edit

Activators generated by electron transfer uses a reducing agent unable to initiate new chains (instead of organic radicals) as regenerator for the low-valent metal. Examples are metallic copper, tin(II), ascorbic acid, or triethylamine. It allows for lower concentrations of transition metals, and may also be possible in aqueous or dispersed media.

Hybrid and bimetallic systems edit

This technique uses a variety of different metals/oxidation states, possibly on solid supports, to act as activators/deactivators, possibly with reduced toxicity or sensitivity.[24][25] Iron salts can, for example, efficiently activate alkyl halides but requires an efficient Cu(II) deactivator which can be present in much lower concentrations (3–5 mol%)

Metal-free ATRP edit

Trace metal catalyst remaining in the final product has limited the application of ATRP in biomedical and electronic fields. In 2014, Craig Hawker and coworkers developed a new catalysis system involving photoredox reaction of 10-phenothiazine. The metal-free ATRP has been demonstrated to be capable of controlled polymerization of methacrylates.[26] This technique was later expanded to polymerization of acrylonitrile by Matyjaszewski et al.[27]

Mechano/sono-ATRP edit

Mechano/sono-ATRP uses mechanical forces, typically ultrasonic agitation, as an external stimulus to induce the (re)generation of activators in ATRP. Esser-Kahn, et al. demonstrated the first example of mechanoATRP using the piezoelectricity of barium titanate to reduce Cu(II) species.[28] Matyjaszewski, et al. later improved the technique by using nanometer-sized and/or surface-functionalized barium titanate or zinc oxide particles, achieving superior rate and control of polymerization, as well as temporal control, with ppm-level of copper catalysts.[29][30] In addition to peizoelectric particles, water and carbonates were found to mediate mechano/sono-ATRP. Mechochemically homolyzed water molecules undergoes radical addition to monomers, which in turn reduces Cu(II) species.[31] Mechanically unstable Cu(II)-carbonate complexes formed in the presence to insoluble carbonates, which oxidizes dimethylsulfoxide, the solvent molecules, to generate Cu(I) species and carbon dioxide.[32]

Biocatalytic ATRP edit

Metalloenzymes have been used for the first time as ATRP catalysts, in parallel and independently, by the research teams of Fabio Di Lena[33] and Nico Bruns.[34] This pioneering work has paved the way to the emerging field of biocatalytic reversible-deactivation radical polymerization.[35][36]

Polymers synthesized through ATRP edit

See also edit

External links edit

  • About ATRP - Matyjaszewski Polymer Group

References edit

  1. ^ Kato, M; Kamigaito, M; Sawamoto, M; Higashimura, T (1995). "Polymerization of Methyl Methacrylate with the Carbon Tetrachloride / Dichlorotris-(triphenylphosphine)ruthenium(II) / Methylaluminum Bis(2,6-di-tert-butylphenoxide) Initiating System: Possibility of Living Radical Polymerization". Macromolecules. 28 (5): 1721–1723. Bibcode:1995MaMol..28.1721K. doi:10.1021/ma00109a056.
  2. ^ Wang, J-S; Matyjaszewski, K (1995). "Controlled/"living" radical polymerization. Atom transfer radical polymerization in the presence of transition-metal complexes". J. Am. Chem. Soc. 117 (20): 5614–5615. doi:10.1021/ja00125a035.
  3. ^ "The 2011 Wolf Prize in Chemistry". Wolf Fund. Retrieved 21 February 2011.
  4. ^ Jenkins, Aubrey D.; Jones, Richard G.; Moad, Graeme (2010). "Terminology for reversible-deactivation radical polymerization previously called "controlled" radical or "living" radical polymerization (IUPAC Recommendations 2010)" (PDF). Pure and Applied Chemistry. 82 (2): 483–491. doi:10.1351/PAC-REP-08-04-03.
  5. ^ Cowie, J. M. G.; Arrighi, V. In Polymers: Chemistry and Physics of Modern Materials; CRC Press Taylor and Francis Group: Boca Raton, Fl, 2008; 3rd Ed., pp. 82–84 ISBN 0849398134
  6. ^ Matyjaszewski, K. . Archived from the original on February 22, 2009. Retrieved Jan 7, 2009.
  7. ^ Patten, T. E; Matyjaszewski, K (1998). "Atom Transfer Radical Polymerization and the Synthesis of Polymeric Materials". Adv. Mater. 10 (12): 901–915. doi:10.1002/(sici)1521-4095(199808)10:12<901::aid-adma901>3.0.co;2-b.
  8. ^ a b c Odian, G. In Radical Chain Polymerization; Principles of Polymerization; Wiley-Interscience: Staten Island, New York, 2004; Vol. , pp 316–321.
  9. ^ a b c Matyjaszewski, Krzysztof; Xia, Jianhui (2001). "Atom Transfer Radical Polymerization". Chem. Rev. 101 (9): 2921–90. doi:10.1021/cr940534g. ISSN 0009-2665. PMID 11749397.
  10. ^ <!- -Not stated- ->. "Initiators". the Matyjaszewski Polymer Group. Carnegie Mellon University. from the original on July 19, 2011. Retrieved November 30, 2018.
  11. ^ Jakubowski, Wojciech. "Complete Tools for the Synthesis of Well-Defined Functionalized Polymers via ATRP". Sigma-Aldrich. Retrieved 21 July 2010.
  12. ^ <!- -Not stated- ->. "Use of Functional ATRP Initiators". the Matyjaszewski Polymer Group. Carnegie Mellon University. from the original on February 13, 2011. Retrieved November 30, 2018.
  13. ^ <!- -Not stated- ->. "Structural Characterization of an ATRP Catalyst Complex". the Matyjaszewski Polymer Group. Carnegie Mellon University. Retrieved November 30, 2018.
  14. ^ a b Tang, W; Kwak, Y; Braunecker, W; Tsarevsky, N V; Coote, M L; Matyjaszewski, K (2008). "Understanding Atom Transfer Radical Polymerization: Effect of Ligand and Initiator Structures on the Equilibrium Constants". J. Am. Chem. Soc. 130 (32): 10702–10713. doi:10.1021/ja802290a. PMID 18642811.
  15. ^ Braunecker, W; Tsarevsky, N V; Gennaro, A; Matyjaszewski, K (2009). "Thermodynamic Components of the Atom Transfer Radical Polymerization Equilibrium: Quantifying Solvent Effects". Macromolecules. 42 (17): 6348–6360. Bibcode:2009MaMol..42.6348B. doi:10.1021/ma901094s.
  16. ^ Wang, Y; Kwak, Y; Buback, J; Buback, M; Matyjaszewski, K (2012). "Determination of ATRP Equilibrium Constants under Polymerization Conditions". ACS Macro Lett. 1 (12): 1367–1370. doi:10.1021/mz3005378.
  17. ^ Tang, W; Matyjaszewski, K (2007). "Effects of Initiator Structure on Activation Rate Constants in ATRP". Macromolecules. 40 (6): 1858–1863. Bibcode:2007MaMol..40.1858T. doi:10.1021/ma062897b.
  18. ^ Tang, W; Matyjaszewski, K (2006). "Effect of Ligand Structure on Activation Rate Constants in ATRP". Macromolecules. 39 (15): 4953–4959. Bibcode:2006MaMol..39.4953T. doi:10.1021/ma0609634.
  19. ^ Wang, Y; Zhong, M; Zhang, Y; Magenau, A J D; Matyjaszewski, K (2012). "Halogen Conservation in Atom Transfer Radical Polymerization". Macromolecules. 45 (21): 8929–8932. Bibcode:2012MaMol..45.8929W. doi:10.1021/ma3018958.
  20. ^ Wang, Y; Soerensen, N; Zhong, M; Schroeder, H; Buback, M; Matyjaszewski, K (2013). "Improving the "Livingness" of ATRP by Reducing Cu Catalyst Concentration". Macromolecules. 46 (3): 689–691. Bibcode:2013MaMol..46..683W. doi:10.1021/ma3024393.
  21. ^ "Atom-Transfer Radical-Polymerization (ATRP) – Artificial Intelligence for Chemistry". Retrieved 2019-11-19.
  22. ^ Borman, Stu (October 30, 2006). "Polymers with Safe Amounts of Copper". Chemical & Engineering News. 84 (43): 40–41. doi:10.1021/cen-v084n044.p040. Retrieved November 30, 2018.
  23. ^ Siegwart, Daniel; Kwan Oh, Jung; Matyjaszewski, Krzysztof (January 1, 2012). "ATRP in the design of functional materials for biomedical applications". Progress in Polymer Science. 37 (1): 18–37. doi:10.1016/j.progpolymsci.2011.08.001. PMC 3604987. PMID 23525884.
  24. ^ Xiong, De'an; He, Zhenping (15 January 2010). "Modulating the catalytic activity of Au/micelles by tunable hydrophilic channels". Journal of Colloid and Interface Science. 341 (2): 273–279. Bibcode:2010JCIS..341..273X. doi:10.1016/j.jcis.2009.09.045. PMID 19854448.
  25. ^ Chen, Xi; He, Zhenping; et al. (5 August 2008). "Core-shell-corona Au-micelle composites with a tunable smart hybrid shell". Langmuir. 24 (15): 8198–8204. doi:10.1021/la800244g. PMID 18576675.
  26. ^ Treat, Nicolas; Sprafke, Hazel; Kramer, John; Clark, Paul; Barton, Bryan; Read de Alaniz, Javier; Fors, Brett; Hawker, Craig (2014). "Metal-Free Atom Transfer Radical Polymerization". Journal of the American Chemical Society. 136 (45): 16096–16101. doi:10.1021/ja510389m. PMID 25360628.
  27. ^ Pan, Xiangcheng; Lamson, Melissa; Yan, Jiajun; Matyjaszewski, Krzysztof (17 February 2015). "Photoinduced Metal-Free Atom Transfer Radical Polymerization of Acrylonitrile". ACS Macro Letters. 4 (2): 192–196. doi:10.1021/mz500834g.
  28. ^ Mohapatra, Hemakesh; Kleiman, Maya; Esser-Kahn, Aaron Palmer (24 October 2016). "Mechanically controlled radical polymerization initiated by ultrasound". Nature Chemistry. 9 (2): 135–139. doi:10.1038/nchem.2633.
  29. ^ Wang, Zhenhua; Pan, Xiangcheng; Yan, Jiajun; Dadashi-Silab, Sajjad; Xie, Guojun; Zhang, Jianan; Wang, Zhanhua; Xia, Hesheng; Matyjaszewski, Krzysztof (28 April 2017). "Temporal Control in Mechanically Controlled Atom Transfer Radical Polymerization Using Low ppm of Cu Catalyst". ACS Macro Letters. 6 (5): 546–549. doi:10.1021/acsmacrolett.7b00152.
  30. ^ Wang, Zhenhua; Pan, Xiangcheng; Li, Lingchun; Fantin, Marco; Yan, Jiajun; Wang, Zongyu; Wang, Zhanhua; Xia, Hesheng; Matyjaszewski, Krzysztof (4 October 2017). "Enhancing Mechanically Induced ATRP by Promoting Interfacial Electron Transfer from Piezoelectric Nanoparticles to Cu Catalysts". Macromolecules. 50 (20): 7940–7948. Bibcode:2017MaMol..50.7940W. doi:10.1021/acs.macromol.7b01597.
  31. ^ Wang, Zhenhua; Wang, Zhanhua; Pan, Xiangcheng; Fu, Liye; Lathwal, Sushil; Olszewski, Mateusz; Yan, Jiajun; Enciso, Alan E.; Wang, Zongyu; Xia, Hesheng; Matyjaszewski, Krzysztof (20 March 2018). "Ultrasonication-Induced Aqueous Atom Transfer Radical Polymerization". ACS Macro Letters. 7 (3): 275–280. doi:10.1021/acsmacrolett.8b00027. ISSN 2161-1653.
  32. ^ Wang, Zhenhua; Lorandi, Francesca; Fantin, Marco; Wang, Zongyu; Yan, Jiajun; Wang, Zhanhua; Xia, Hesheng; Matyjaszewski, Krzysztof (22 January 2019). "Atom Transfer Radical Polymerization Enabled by Sonochemically Labile Cu-carbonate Species". ACS Macro Letters. 8 (2): 161–165. doi:10.1021/acsmacrolett.9b00029.
  33. ^ Ng, Yeap-Hung; Lena, Fabio di; Chai, Christina L. L. (2011-05-24). "PolyPEGA with predetermined molecular weights from enzyme-mediated radical polymerization in water". Chemical Communications. 47 (22): 6464–6466. doi:10.1039/C1CC10989H. ISSN 1364-548X.
  34. ^ Sigg, Severin J.; Seidi, Farzad; Renggli, Kasper; Silva, Tilana B.; Kali, Gergely; Bruns, Nico (2011-11-01). "Horseradish Peroxidase as a Catalyst for Atom Transfer Radical Polymerization: Horseradish Peroxidase as a Catalyst for Atom Transfer …". Macromolecular Rapid Communications. 32 (21): 1710–1715. doi:10.1002/marc.201100349.
  35. ^ Enzyme Catalysis for Reversible Deactivation Radical Polymerization. Ruoyu Li, Weina Kong, Zesheng An. Angew. Chem. Int. Ed. 2022, 61, e202202033 https://doi.org/10.1002/ange.202202033
  36. ^ Li, Ruoyu; Kong, Weina; An, Zesheng (2023-02-14). "Controlling Radical Polymerization with Biocatalysts". Macromolecules. 56 (3): 751–761. doi:10.1021/acs.macromol.2c02307. ISSN 0024-9297.

atom, transfer, radical, polymerization, atrp, example, reversible, deactivation, radical, polymerization, like, counterpart, atra, atom, transfer, radical, addition, atrp, means, forming, carbon, carbon, bond, with, transition, metal, catalyst, polymerization. Atom transfer radical polymerization ATRP is an example of a reversible deactivation radical polymerization Like its counterpart ATRA or atom transfer radical addition ATRP is a means of forming a carbon carbon bond with a transition metal catalyst Polymerization from this method is called atom transfer radical addition polymerization ATRAP As the name implies the atom transfer step is crucial in the reaction responsible for uniform polymer chain growth ATRP or transition metal mediated living radical polymerization was independently discovered by Mitsuo Sawamoto 1 and by Krzysztof Matyjaszewski and Jin Shan Wang in 1995 2 3 The following scheme presents a typical ATRP reaction General ATRP reaction A Initiation B Equilibrium with dormant species C Propagation IUPAC definition for ATRP Controlled reversible deactivation radical polymerization in which the deactivationof the radicals involves reversible atom transfer or reversible group transfer catalyzed usually though not exclusively by transition metal complexes 4 Contents 1 Overview of ATRP 2 Components of normal ATRP 2 1 Monomer 2 2 Initiator 2 3 Catalyst 2 4 Ligand 2 5 Solvents 3 Kinetics of normal ATRP 3 1 ATRP equilibrium constant 3 2 Activation and deactivation rate coefficients 3 3 Retention of chain end functionality 4 Advantages and disadvantages of ATRP 4 1 Advantages 4 2 Disadvantages 5 Different ATRP methods 5 1 Activator regeneration ATRP methods 5 1 1 ICAR ATRP 5 1 2 ARGET ATRP 5 1 3 SARA ATRP 5 1 4 eATRP 5 1 5 Photoinduced ATRP 5 2 Other ATRP methods 5 2 1 Reverse ATRP 5 2 2 SR amp NI ATRP 5 2 3 AGET ATRP 5 2 4 Hybrid and bimetallic systems 5 2 5 Metal free ATRP 5 2 6 Mechano sono ATRP 5 2 7 Biocatalytic ATRP 6 Polymers synthesized through ATRP 7 See also 8 External links 9 ReferencesOverview of ATRP editATRP usually employs a transition metal complex as the catalyst with an alkyl halide as the initiator R X Various transition metal complexes namely those of Cu Fe Ru Ni and Os have been employed as catalysts for ATRP In an ATRP process the dormant species is activated by the transition metal complex to generate radicals via one electron transfer process Simultaneously the transition metal is oxidized to higher oxidation state This reversible process rapidly establishes an equilibrium that is predominately shifted to the side with very low radical concentrations The number of polymer chains is determined by the number of initiators Each growing chain has the same probability to propagate with monomers to form living dormant polymer chains R Pn X As a result polymers with similar molecular weights and narrow molecular weight distribution can be prepared ATRP reactions are very robust in that they are tolerant of many functional groups like allyl amino epoxy hydroxy and vinyl groups present in either the monomer or the initiator 5 ATRP methods are also advantageous due to the ease of preparation commercially available and inexpensive catalysts copper complexes pyridine based ligands and initiators alkyl halides 6 nbsp The ATRP with styrene If all the styrene is reacted the conversion is 100 the polymer will have 100 units of styrene built into it PMDETA stands for N N N N N pentamethyldiethylenetriamine Components of normal ATRP editThere are five important variable components of atom transfer radical polymerizations They are the monomer initiator catalyst ligand and solvent The following section breaks down the contributions of each component to the overall polymerization Monomer edit Monomers typically used in ATRP are molecules with substituents that can stabilize the propagating radicals for example styrenes meth acrylates meth acrylamides and acrylonitrile 7 ATRP is successful at leading to polymers of high number average molecular weight and low dispersity when the concentration of the propagating radical balances the rate of radical termination Yet the propagating rate is unique to each individual monomer Therefore it is important that the other components of the polymerization initiator catalyst ligand and solvent are optimized in order for the concentration of the dormant species to be greater than that of the propagating radical while being low enough as to prevent slowing down or halting the reaction 8 9 Initiator edit The number of growing polymer chains is determined by the initiator To ensure a low polydispersity and a controlled polymerization the rate of initiation must be as fast or preferably faster than the rate of propagation 10 Ideally all chains will be initiated in a very short period of time and will be propagated at the same rate Initiators are typically chosen to be alkyl halides whose frameworks are similar to that of the propagating radical 8 Alkyl halides such as alkyl bromides are more reactive than alkyl chlorides Both offer good molecular weight control 8 9 The shape or structure of the initiator influences polymer architecture For example initiators with multiple alkyl halide groups on a single core can lead to a star like polymer shape 11 Furthermore a functionalized ATRP initiators can be used to synthesize hetero telechelic polymers with a variety of chain end groups 12 nbsp Illustration of a star initiator for ATRP Catalyst edit The catalyst is the most important component of ATRP because it determines the equilibrium constant between the active and dormant species This equilibrium determines the polymerization rate An equilibrium constant that is too small may inhibit or slow the polymerization while an equilibrium constant that is too large leads to a wide distribution of chain lengths 9 There are several requirements for the metal catalyst There needs to be two accessible oxidation states that are differentiated by one electron The metal center needs to have reasonable affinity for halogens The coordination sphere of the metal needs to be expandable when it is oxidized as to accommodate the halogen The transition metal catalyst should not lead to significant side reactions such as irreversible coupling with the propagating radicals and catalytic radical termination The most studied catalysts are those that include copper which has shown the most versatility with successful polymerizations for a wide selection of monomers Ligand edit One of the most important aspects in an ATRP reaction is the choice of ligand which is used in combination with the traditionally copper halide catalyst to form the catalyst complex The main function of the ligand is to solubilize the copper halide in whichever solvent is chosen and to adjust the redox potential of the copper 13 This changes the activity and dynamics of the halogen exchange reaction and subsequent activation and deactivation of the polymer chains during polymerization therefore greatly affecting the kinetics of the reaction and the degree of control over the polymerization Different ligands should be chosen based on the activity of the monomer and the choice of metal for the catalyst As copper halides are primarily used as the catalyst amine based ligands are most commonly chosen Ligands with higher activities are being investigated as ways to potentially decrease the concentration of catalyst in the reaction since a more active catalyst complex would lead to a higher concentration of deactivator in the reaction However a too active catalyst can lead to a loss of control and increase the polydispersity of the resulting polymer Solvents edit Toluene 1 4 dioxane xylene anisole DMF DMSO water methanol acetonitrile or even the monomer itself described as a bulk polymerization are commonly used Kinetics of normal ATRP editReactions in atom transfer radical polymerization Initiation R X Cu I X L k d 0 k a 0 Cu II X 2 L R K ATRP 0 k a 0 k d 0 R M k add R P 1 2 R k t 0 R R or R R H displaystyle begin array ll color Blue ce R color Red ce X color Green ce Cu I color Red ce X ce L overset k a 0 underset k d 0 ce lt lt gt color Green ce Cu II color Red ce X2 ce L color Blue ce R cdot amp K ce ATRP 0 frac k a 0 k d 0 color Blue ce R cdot ce M gt k ce add color Blue ce R ce P1 2 color Blue ce R cdot ce gt k t 0 begin Bmatrix color Blue ce R color Blue ce R ce or color Blue ce R color Blue ce R ce H end Bmatrix end array nbsp Quasi steady state R P n X Cu I X L k d k a Cu II X 2 L R P n ATRP activation deactivation equilibrium K ATRP k a k d R P n M k p R P n 1 2 R P n k t R P n P n R or R P n R P n H Same as conventional radical polymerization displaystyle begin array ll color Blue ce R ce P mathit n color Red ce X color Green ce Cu I color Red ce X ce L overset k a underset k d ce lt lt gt color Green ce Cu II color Red ce X2 ce L color Blue ce R ce P mathit n amp begin array l ce ATRP ce activation deactivation ce equilibrium K ce ATRP frac k a k d end array left begin aligned color Blue ce R ce P mathit n ce M amp ce gt k p color Blue ce R ce P mathit n 1 2 color Blue ce R ce P mathit n amp ce gt k t begin Bmatrix color Blue ce R ce P mathit n P mathit n color Blue ce R ce or color Blue ce R ce P mathit n color Blue ce R ce P mathit n H end Bmatrix quad end aligned right amp begin array l text Same as conventional text radical polymerization end array end array nbsp Other chain breaking reactions k t x displaystyle k tx nbsp should also be considered ATRP equilibrium constant edit The radical concentration in normal ATRP can be calculated via the following equation R P n K ATRP R P n X Cu I X L Cu II X 2 L displaystyle ce R P n bullet K ce ATRP cdot ce R P n ce X cdot frac ce Cu I X L ce Cu II X2 L nbsp It is important to know the KATRP value to adjust the radical concentration The KATRP value depends on the homo cleavage energy of the alkyl halide and the redox potential of the Cu catalyst with different ligands Given two alkyl halides R1 X and R2 X and two ligands L1 and L2 there will be four combinations between different alkyl halides and ligands Let KijATRP refer to the KATRP value for Ri X and Lj If we know three of these four combinations the fourth one can be calculated as K A T R P 22 K A T R P 12 K A T R P 21 K A T R P 11 displaystyle K mathrm ATRP 22 dfrac K mathrm ATRP 12 times K mathrm ATRP 21 K mathrm ATRP 11 nbsp The KATRP values for different alkyl halides and different Cu catalysts can be found in literature 14 Solvents have significant effects on the KATRP values The KATRP value increases dramatically with the polarity of the solvent for the same alkyl halide and the same Cu catalyst 15 The polymerization must take place in solvent monomer mixture which changes to solvent monomer polymer mixture gradually The KATRP values could change 10000 times by switching the reaction medium from pure methyl acrylate to pure dimethyl sulfoxide 16 Activation and deactivation rate coefficients edit Deactivation rate coefficient kd values must be sufficiently large to obtain low dispersity The direct measurement of kd is difficult though not impossible In most cases kd may be calculated from known KATRP and ka 14 17 18 Cu complexes providing very low kd values are not recommended for use in ATRP reactions Retention of chain end functionality edit X Constant displaystyle sum color Red ce X ce Constant nbsp R X 0 R X t R P n X t Loss of chain end functionality Cu I X L t 2 Cu II X 2 L t Cu I X L 0 2 Cu II X 2 L 0 Change in Cu I X L and Cu II X 2 L RA X t X transfer in activator regeneration displaystyle underbrace color Blue ce R color Red ce X 0 color Blue ce R color Red ce X t color Blue ce R ce P mathit n color Red ce X t begin matrix text Loss of chain text end functionality end matrix underbrace color Green ce Cu I color Red ce X ce L t 2 color Green ce Cu II color Red ce X2 ce L t color Green ce Cu I color Red ce X ce L 0 2 color Green ce Cu II color Red ce X2 ce L 0 text Change in ce Cu I X L text and ce Cu II X2 L underbrace color Orange ce RA color Red ce X t begin matrix text X transfer in text activator text regeneration end matrix nbsp Halogen Conservation in Atom Transfer Radical Polymerization High level retention of chain end functionality is typically desired However the determination of the loss of chain end functionality based on 1H NMR and mass spectroscopy methods cannot provide precise values As a result it is difficult to identify the contributions of different chain breaking reactions in ATRP One simple rule in ATRP comprises the principle of halogen conservation 19 Halogen conservation means the total amount of halogen in the reaction systems must remain as a constant From this rule the level of retention of chain end functionality can be precisely determined in many cases The precise determination of the loss of chain end functionality enabled further investigation of the chain breaking reactions in ATRP 20 Advantages and disadvantages of ATRP editAdvantages edit ATRP enables the polymerization of a wide variety of monomers with different chemical functionalities proving to be more tolerant of these functionalities than ionic polymerizations It provides increased control of molecular weight molecular architecture and polymer composition while maintaining a low polydispersity 1 05 1 2 The halogen remaining at the end of the polymer chain after polymerization allows for facile post polymerization chain end modification into different reactive functional groups The use of multi functional initiators facilitates the synthesis of lower arm star polymers and telechelic polymers External visible light stimulation ATRP has a high responding speed and excellent functional group tolerance 21 Disadvantages edit The most significant drawback of ATRP is the high concentrations of catalyst required for the reaction This catalyst standardly consists of a copper halide and an amine based ligand The removal of the copper from the polymer after polymerization is often tedious and expensive limiting ATRP s use in the commercial sector 22 However researchers are currently developing methods which would limit the necessity of the catalyst concentration to ppm ATRP is also a traditionally air sensitive reaction normally requiring freeze pump thaw cycles However techniques such as Activator Generated by Electron Transfer AGET ATRP provide potential alternatives which are not air sensitive 23 A final disadvantage is the difficulty of conducting ATRP in aqueous media Different ATRP methods editActivator regeneration ATRP methods edit In a normal ATRP the concentration of radicals is determined by the KATRP value concentration of dormant species and the CuI CuII ratio In principle the total amount of Cu catalyst should not influence polymerization kinetics However the loss of chain end functionality slowly but irreversibly converts CuI to CuII Thus initial CuI I ratios are typically 0 1 to 1 When very low concentrations of catalysts are used usually at the ppm level activator regeneration processes are generally required to compensate the loss of CEF and regenerate a sufficient amount of CuI to continue the polymerization Several activator regeneration ATRP methods were developed namely ICAR ATRP ARGET ATRP SARA ATRP eATRP and photoinduced ATRP The activator regeneration process is introduced to compensate the loss of chain end functionality thus the cumulative amount of activator regeneration should roughly equal the total amount of the loss of chain end functionality nbsp Activator regeneration Atom Transfer Radical Polymerization ICAR ATRP edit Initiators for continuous activator regeneration ICAR is a technique that uses conventional radical initiators to continuously regenerate the activator lowering its required concentration from thousands of ppm to lt 100 ppm making it an industrially relevant technique ARGET ATRP edit Activators regenerated by electron transfer ARGET employs non radical forming reducing agents for regeneration of CuI A good reducing agent e g hydrazine phenols sugars ascorbic acid should only react with CuII and not with radicals or other reagents in the reaction mixture SARA ATRP edit A typical SARA ATRP employs Cu0 as both supplemental activator and reducing agent SARA Cu0 can activate alkyl halide directly but slowly Cu0 can also reduce CuII to CuI Both processes help to regenerate CuI activator Other zerovalent metals such as Mg Zn and Fe have also been employed for Cu based SARA ATRP eATRP edit In eATRP the activator CuI is regenerated via electrochemical process The development of eATRP enables precise control of the reduction process and external regulation of the polymerization In an eATRP process the redox reaction involves two electrodes The CuII species is reduced to CuI at the cathode The anode compartment is typically separated from the polymerization environment by a glass frit and a conductive gel Alternatively a sacrificial aluminum counter electrode can be used which is directly immersed in the reaction mixture Photoinduced ATRP edit The direct photo reduction of transition metal catalysts in ATRP and or photo assistant activation of alkyl halide is particularly interesting because such a procedure will allow performing of ATRP with ppm level of catalysts without any other additives Other ATRP methods edit Reverse ATRP edit In reverse ATRP the catalyst is added in its higher oxidation state Chains are activated by conventional radical initiators e g AIBN and deactivated by the transition metal The source of transferable halogen is the copper salt so this must be present in concentrations comparable to the transition metal SR amp NI ATRP edit A mixture of radical initiator and active lower oxidation state catalyst allows for the creation of block copolymers contaminated with homopolymer which is impossible using standard reverse ATRP This is called SR amp NI simultaneous reverse and normal initiation ATRP AGET ATRP edit Activators generated by electron transfer uses a reducing agent unable to initiate new chains instead of organic radicals as regenerator for the low valent metal Examples are metallic copper tin II ascorbic acid or triethylamine It allows for lower concentrations of transition metals and may also be possible in aqueous or dispersed media Hybrid and bimetallic systems edit This technique uses a variety of different metals oxidation states possibly on solid supports to act as activators deactivators possibly with reduced toxicity or sensitivity 24 25 Iron salts can for example efficiently activate alkyl halides but requires an efficient Cu II deactivator which can be present in much lower concentrations 3 5 mol Metal free ATRP edit Trace metal catalyst remaining in the final product has limited the application of ATRP in biomedical and electronic fields In 2014 Craig Hawker and coworkers developed a new catalysis system involving photoredox reaction of 10 phenothiazine The metal free ATRP has been demonstrated to be capable of controlled polymerization of methacrylates 26 This technique was later expanded to polymerization of acrylonitrile by Matyjaszewski et al 27 Mechano sono ATRP edit Mechano sono ATRP uses mechanical forces typically ultrasonic agitation as an external stimulus to induce the re generation of activators in ATRP Esser Kahn et al demonstrated the first example of mechanoATRP using the piezoelectricity of barium titanate to reduce Cu II species 28 Matyjaszewski et al later improved the technique by using nanometer sized and or surface functionalized barium titanate or zinc oxide particles achieving superior rate and control of polymerization as well as temporal control with ppm level of copper catalysts 29 30 In addition to peizoelectric particles water and carbonates were found to mediate mechano sono ATRP Mechochemically homolyzed water molecules undergoes radical addition to monomers which in turn reduces Cu II species 31 Mechanically unstable Cu II carbonate complexes formed in the presence to insoluble carbonates which oxidizes dimethylsulfoxide the solvent molecules to generate Cu I species and carbon dioxide 32 Biocatalytic ATRP edit Metalloenzymes have been used for the first time as ATRP catalysts in parallel and independently by the research teams of Fabio Di Lena 33 and Nico Bruns 34 This pioneering work has paved the way to the emerging field of biocatalytic reversible deactivation radical polymerization 35 36 Polymers synthesized through ATRP editPolystyrene Poly methyl methacrylate PolyacrylamideSee also editHeteropolymer Radical chemistry Reversible addition fragmentation chain transfer polymerization Nitroxide mediated radical polymerizationExternal links editAbout ATRP Matyjaszewski Polymer GroupReferences edit Kato M Kamigaito M Sawamoto M Higashimura T 1995 Polymerization of Methyl Methacrylate with the Carbon Tetrachloride Dichlorotris triphenylphosphine ruthenium II Methylaluminum Bis 2 6 di tert butylphenoxide Initiating System Possibility of Living Radical Polymerization Macromolecules 28 5 1721 1723 Bibcode 1995MaMol 28 1721K doi 10 1021 ma00109a056 Wang J S Matyjaszewski K 1995 Controlled living radical polymerization Atom transfer radical polymerization in the presence of transition metal complexes J Am Chem Soc 117 20 5614 5615 doi 10 1021 ja00125a035 The 2011 Wolf Prize in Chemistry Wolf Fund Retrieved 21 February 2011 Jenkins Aubrey D Jones Richard G Moad Graeme 2010 Terminology for reversible deactivation radical polymerization previously called controlled radical or living radical polymerization IUPAC Recommendations 2010 PDF Pure and Applied Chemistry 82 2 483 491 doi 10 1351 PAC REP 08 04 03 Cowie J M G Arrighi V In Polymers Chemistry and Physics of Modern Materials CRC Press Taylor and Francis Group Boca Raton Fl 2008 3rd Ed pp 82 84 ISBN 0849398134 Matyjaszewski K Fundamentals of ATRP Research Archived from the original on February 22 2009 Retrieved Jan 7 2009 Patten T E Matyjaszewski K 1998 Atom Transfer Radical Polymerization and the Synthesis of Polymeric Materials Adv Mater 10 12 901 915 doi 10 1002 sici 1521 4095 199808 10 12 lt 901 aid adma901 gt 3 0 co 2 b a b c Odian G In Radical Chain Polymerization Principles of Polymerization Wiley Interscience Staten Island New York 2004 Vol pp 316 321 a b c Matyjaszewski Krzysztof Xia Jianhui 2001 Atom Transfer Radical Polymerization Chem Rev 101 9 2921 90 doi 10 1021 cr940534g ISSN 0009 2665 PMID 11749397 lt Not stated gt Initiators the Matyjaszewski Polymer Group Carnegie Mellon University Archived from the original on July 19 2011 Retrieved November 30 2018 Jakubowski Wojciech Complete Tools for the Synthesis of Well Defined Functionalized Polymers via ATRP Sigma Aldrich Retrieved 21 July 2010 lt Not stated gt Use of Functional ATRP Initiators the Matyjaszewski Polymer Group Carnegie Mellon University Archived from the original on February 13 2011 Retrieved November 30 2018 lt Not stated gt Structural Characterization of an ATRP Catalyst Complex the Matyjaszewski Polymer Group Carnegie Mellon University Retrieved November 30 2018 a b Tang W Kwak Y Braunecker W Tsarevsky N V Coote M L Matyjaszewski K 2008 Understanding Atom Transfer Radical Polymerization Effect of Ligand and Initiator Structures on the Equilibrium Constants J Am Chem Soc 130 32 10702 10713 doi 10 1021 ja802290a PMID 18642811 Braunecker W Tsarevsky N V Gennaro A Matyjaszewski K 2009 Thermodynamic Components of the Atom Transfer Radical Polymerization Equilibrium Quantifying Solvent Effects Macromolecules 42 17 6348 6360 Bibcode 2009MaMol 42 6348B doi 10 1021 ma901094s Wang Y Kwak Y Buback J Buback M Matyjaszewski K 2012 Determination of ATRP Equilibrium Constants under Polymerization Conditions ACS Macro Lett 1 12 1367 1370 doi 10 1021 mz3005378 Tang W Matyjaszewski K 2007 Effects of Initiator Structure on Activation Rate Constants in ATRP Macromolecules 40 6 1858 1863 Bibcode 2007MaMol 40 1858T doi 10 1021 ma062897b Tang W Matyjaszewski K 2006 Effect of Ligand Structure on Activation Rate Constants in ATRP Macromolecules 39 15 4953 4959 Bibcode 2006MaMol 39 4953T doi 10 1021 ma0609634 Wang Y Zhong M Zhang Y Magenau A J D Matyjaszewski K 2012 Halogen Conservation in Atom Transfer Radical Polymerization Macromolecules 45 21 8929 8932 Bibcode 2012MaMol 45 8929W doi 10 1021 ma3018958 Wang Y Soerensen N Zhong M Schroeder H Buback M Matyjaszewski K 2013 Improving the Livingness of ATRP by Reducing Cu Catalyst Concentration Macromolecules 46 3 689 691 Bibcode 2013MaMol 46 683W doi 10 1021 ma3024393 Atom Transfer Radical Polymerization ATRP Artificial Intelligence for Chemistry Retrieved 2019 11 19 Borman Stu October 30 2006 Polymers with Safe Amounts of Copper Chemical amp Engineering News 84 43 40 41 doi 10 1021 cen v084n044 p040 Retrieved November 30 2018 Siegwart Daniel Kwan Oh Jung Matyjaszewski Krzysztof January 1 2012 ATRP in the design of functional materials for biomedical applications Progress in Polymer Science 37 1 18 37 doi 10 1016 j progpolymsci 2011 08 001 PMC 3604987 PMID 23525884 Xiong De an He Zhenping 15 January 2010 Modulating the catalytic activity of Au micelles by tunable hydrophilic channels Journal of Colloid and Interface Science 341 2 273 279 Bibcode 2010JCIS 341 273X doi 10 1016 j jcis 2009 09 045 PMID 19854448 Chen Xi He Zhenping et al 5 August 2008 Core shell corona Au micelle composites with a tunable smart hybrid shell Langmuir 24 15 8198 8204 doi 10 1021 la800244g PMID 18576675 Treat Nicolas Sprafke Hazel Kramer John Clark Paul Barton Bryan Read de Alaniz Javier Fors Brett Hawker Craig 2014 Metal Free Atom Transfer Radical Polymerization Journal of the American Chemical Society 136 45 16096 16101 doi 10 1021 ja510389m PMID 25360628 Pan Xiangcheng Lamson Melissa Yan Jiajun Matyjaszewski Krzysztof 17 February 2015 Photoinduced Metal Free Atom Transfer Radical Polymerization of Acrylonitrile ACS Macro Letters 4 2 192 196 doi 10 1021 mz500834g Mohapatra Hemakesh Kleiman Maya Esser Kahn Aaron Palmer 24 October 2016 Mechanically controlled radical polymerization initiated by ultrasound Nature Chemistry 9 2 135 139 doi 10 1038 nchem 2633 Wang Zhenhua Pan Xiangcheng Yan Jiajun Dadashi Silab Sajjad Xie Guojun Zhang Jianan Wang Zhanhua Xia Hesheng Matyjaszewski Krzysztof 28 April 2017 Temporal Control in Mechanically Controlled Atom Transfer Radical Polymerization Using Low ppm of Cu Catalyst ACS Macro Letters 6 5 546 549 doi 10 1021 acsmacrolett 7b00152 Wang Zhenhua Pan Xiangcheng Li Lingchun Fantin Marco Yan Jiajun Wang Zongyu Wang Zhanhua Xia Hesheng Matyjaszewski Krzysztof 4 October 2017 Enhancing Mechanically Induced ATRP by Promoting Interfacial Electron Transfer from Piezoelectric Nanoparticles to Cu Catalysts Macromolecules 50 20 7940 7948 Bibcode 2017MaMol 50 7940W doi 10 1021 acs macromol 7b01597 Wang Zhenhua Wang Zhanhua Pan Xiangcheng Fu Liye Lathwal Sushil Olszewski Mateusz Yan Jiajun Enciso Alan E Wang Zongyu Xia Hesheng Matyjaszewski Krzysztof 20 March 2018 Ultrasonication Induced Aqueous Atom Transfer Radical Polymerization ACS Macro Letters 7 3 275 280 doi 10 1021 acsmacrolett 8b00027 ISSN 2161 1653 Wang Zhenhua Lorandi Francesca Fantin Marco Wang Zongyu Yan Jiajun Wang Zhanhua Xia Hesheng Matyjaszewski Krzysztof 22 January 2019 Atom Transfer Radical Polymerization Enabled by Sonochemically Labile Cu carbonate Species ACS Macro Letters 8 2 161 165 doi 10 1021 acsmacrolett 9b00029 Ng Yeap Hung Lena Fabio di Chai Christina L L 2011 05 24 PolyPEGA with predetermined molecular weights from enzyme mediated radical polymerization in water Chemical Communications 47 22 6464 6466 doi 10 1039 C1CC10989H ISSN 1364 548X Sigg Severin J Seidi Farzad Renggli Kasper Silva Tilana B Kali Gergely Bruns Nico 2011 11 01 Horseradish Peroxidase as a Catalyst for Atom Transfer Radical Polymerization Horseradish Peroxidase as a Catalyst for Atom Transfer Macromolecular Rapid Communications 32 21 1710 1715 doi 10 1002 marc 201100349 Enzyme Catalysis for Reversible Deactivation Radical Polymerization Ruoyu Li Weina Kong Zesheng An Angew Chem Int Ed 2022 61 e202202033 https doi org 10 1002 ange 202202033 Li Ruoyu Kong Weina An Zesheng 2023 02 14 Controlling Radical Polymerization with Biocatalysts Macromolecules 56 3 751 761 doi 10 1021 acs macromol 2c02307 ISSN 0024 9297 Retrieved from https en wikipedia org w index php title Atom transfer radical polymerization amp oldid 1196119915, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.