fbpx
Wikipedia

Archimedean spiral

The Archimedean spiral (also known as the arithmetic spiral) is a spiral named after the 3rd-century BC Greek mathematician Archimedes. It is the locus corresponding to the locations over time of a point moving away from a fixed point with a constant speed along a line that rotates with constant angular velocity. Equivalently, in polar coordinates (r, θ) it can be described by the equation

Three 360° loops of one arm of an Archimedean spiral
with real numbers a and b. Changing the parameter a moves the centerpoint of the spiral outward from the origin (positive a toward θ = 0 and negative a toward θ = π) essentially through a rotation of the spiral, while b controls the distance between loops.

From the above equation, it can thus be stated: position of particle from point of start is proportional to angle θ as time elapses.

Archimedes described such a spiral in his book On Spirals. Conon of Samos was a friend of his and Pappus states that this spiral was discovered by Conon.[1]

Derivation of general equation of spiral edit

A physical approach is used below to understand the notion of Archimedean spirals.

Suppose a point object moves in the Cartesian system with a constant velocity v directed parallel to the x-axis, with respect to the xy-plane. Let at time t = 0, the object was at an arbitrary point (c, 0, 0). If the xy plane rotates with a constant angular velocity ω about the z-axis, then the velocity of the point with respect to z-axis may be written as:

 
The xy plane rotates to an angle ωt (anticlockwise) about the origin in time t. (c, 0) is the position of the object at t = 0. P is the position of the object at time t, at a distance of R = vt + c.
 

Here vt + c is the modulus of the position vector of the particle at any time t, vx is the velocity component along the x-axis and vy is the component along the y-axis. The figure shown alongside explains this.

 

The above equations can be integrated by applying integration by parts, leading to the following parametric equations:

 

Squaring the two equations and then adding (and some small alterations) results in the Cartesian equation

 
(using the fact that ωt = θ and θ = arctan y/x) or
 

Its polar form is

 

Arc length and curvature edit

 
Osculating circles of the Archimedean spiral, tangent to the spiral and having the same curvature at the tangent point. The spiral itself is not drawn, but can be seen as the points where the circles are especially close to each other.

Given the parametrization in cartesian coordinates

 
the arc length from θ1 to θ2 is
 
or, equivalently:
 
The total length from θ1 = 0 to θ2 = θ is therefore
 

The curvature is given by

 

Characteristics edit

 
Archimedean spiral represented on a polar graph

The Archimedean spiral has the property that any ray from the origin intersects successive turnings of the spiral in points with a constant separation distance (equal to 2πb if θ is measured in radians), hence the name "arithmetic spiral". In contrast to this, in a logarithmic spiral these distances, as well as the distances of the intersection points measured from the origin, form a geometric progression.

The Archimedean spiral has two arms, one for θ > 0 and one for θ < 0. The two arms are smoothly connected at the origin. Only one arm is shown on the accompanying graph. Taking the mirror image of this arm across the y-axis will yield the other arm.

For large θ a point moves with well-approximated uniform acceleration along the Archimedean spiral while the spiral corresponds to the locations over time of a point moving away from a fixed point with a constant speed along a line which rotates with constant angular velocity[2] (see contribution from Mikhail Gaichenkov).

As the Archimedean spiral grows, its evolute asymptotically approaches a circle with radius |v|/ω.

General Archimedean spiral edit

Sometimes the term Archimedean spiral is used for the more general group of spirals

 

The normal Archimedean spiral occurs when c = 1. Other spirals falling into this group include the hyperbolic spiral (c = −1), Fermat's spiral (c = 2), and the lituus (c = −2).

Applications edit

One method of squaring the circle, due to Archimedes, makes use of an Archimedean spiral. Archimedes also showed how the spiral can be used to trisect an angle. Both approaches relax the traditional limitations on the use of straightedge and compass in ancient Greek geometric proofs.[3]

 
Mechanism of a scroll compressor

The Archimedean spiral has a variety of real-world applications. Scroll compressors, used for compressing gases, have rotors that can be made from two interleaved Archimedean spirals, involutes of a circle of the same size that almost resemble Archimedean spirals,[4] or hybrid curves.

Archimedean spirals can be found in spiral antenna, which can be operated over a wide range of frequencies.

The coils of watch balance springs and the grooves of very early gramophone records form Archimedean spirals, making the grooves evenly spaced (although variable track spacing was later introduced to maximize the amount of music that could be cut onto a record).[5]

Asking for a patient to draw an Archimedean spiral is a way of quantifying human tremor; this information helps in diagnosing neurological diseases.

Archimedean spirals are also used in digital light processing (DLP) projection systems to minimize the "rainbow effect", making it look as if multiple colors are displayed at the same time, when in reality red, green, and blue are being cycled extremely quickly.[6] Additionally, Archimedean spirals are used in food microbiology to quantify bacterial concentration through a spiral platter.[7]

 
Atacama Large Millimeter Array image of LL Pegasi

They are also used to model the pattern that occurs in a roll of paper or tape of constant thickness wrapped around a cylinder.[8][9]

Many dynamic spirals (such as the Parker spiral of the solar wind, or the pattern made by a Catherine's wheel) are Archimedean. For instance, the star LL Pegasi shows an approximate Archimedean spiral in the dust clouds surrounding it, thought to be ejected matter from the star that has been shepherded into a spiral by another companion star as part of a double star system.[10]

See also edit

References edit

  1. ^ Bulmer-Thomas, Ivor. "Conon of Samos". Dictionary of Scientific Biography. Vol. 3. p. 391.
  2. ^ Sloane, N. J. A. (ed.). "Sequence A091154". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  3. ^ Boyer, Carl B. (1968). A History of Mathematics. Princeton, New Jersey: Princeton University Press. pp. 140–142. ISBN 0-691-02391-3.
  4. ^ Sakata, Hirotsugu; Okuda, Masayuki. "Fluid compressing device having coaxial spiral members". Retrieved 2006-11-25.
  5. ^ Penndorf, Ron. . Archived from the original on 5 November 2005. Retrieved 2005-11-25.. See the passage on Variable Groove.
  6. ^ Ballou, Glen (2008), Handbook for Sound Engineers, CRC Press, p. 1586, ISBN 9780240809694
  7. ^ Gilchrist, J. E.; Campbell, J. E.; Donnelly, C. B.; Peeler, J. T.; Delaney, J. M. (1973). "Spiral Plate Method for Bacterial Determination". Applied Microbiology. 25 (2): 244–52. doi:10.1128/AEM.25.2.244-252.1973. PMC 380780. PMID 4632851.
  8. ^ Peressini, Tony (3 February 2009). (PDF). Archived from the original (PDF) on 3 November 2013. Retrieved 2014-10-06.
  9. ^ Walser, H.; Hilton, P.; Pedersen, J. (2000). Symmetry. Mathematical Association of America. p. 27. ISBN 9780883855324. Retrieved 2014-10-06.
  10. ^ Kim, Hyosun; Trejo, Alfonso; Liu, Sheng-Yuan; Sahai, Raghvendra; Taam, Ronald E.; Morris, Mark R.; Hirano, Naomi; Hsieh, I-Ta (March 2017). "The large-scale nebular pattern of a superwind binary in an eccentric orbit". Nature Astronomy. 1 (3): 0060. arXiv:1704.00449. Bibcode:2017NatAs...1E..60K. doi:10.1038/s41550-017-0060. S2CID 119433782.
  11. ^
  12. ^

External links edit

  • Jonathan Matt making the Archimedean spiral interesting - Video : The surprising beauty of Mathematics - TedX Talks, Green Farms
  • Weisstein, Eric W. "Archimedes' Spiral". MathWorld.
  • archimedean spiral at PlanetMath.
  • Page with Java application to interactively explore the Archimedean spiral and its related curves
  • Online exploration using JSXGraph (JavaScript)
  • Archimedean spiral at "mathcurve"

archimedean, spiral, also, known, arithmetic, spiral, spiral, named, after, century, greek, mathematician, archimedes, locus, corresponding, locations, over, time, point, moving, away, from, fixed, point, with, constant, speed, along, line, that, rotates, with. The Archimedean spiral also known as the arithmetic spiral is a spiral named after the 3rd century BC Greek mathematician Archimedes It is the locus corresponding to the locations over time of a point moving away from a fixed point with a constant speed along a line that rotates with constant angular velocity Equivalently in polar coordinates r 8 it can be described by the equationThree 360 loops of one arm of an Archimedean spiralr a b 8 displaystyle r a b cdot theta with real numbers a and b Changing the parameter a moves the centerpoint of the spiral outward from the origin positive a toward 8 0 and negative a toward 8 p essentially through a rotation of the spiral while b controls the distance between loops From the above equation it can thus be stated position of particle from point of start is proportional to angle 8 as time elapses Archimedes described such a spiral in his book On Spirals Conon of Samos was a friend of his and Pappus states that this spiral was discovered by Conon 1 Contents 1 Derivation of general equation of spiral 2 Arc length and curvature 3 Characteristics 4 General Archimedean spiral 5 Applications 6 See also 7 References 8 External linksDerivation of general equation of spiral editSee also Circular motion A physical approach is used below to understand the notion of Archimedean spirals Suppose a point object moves in the Cartesian system with a constant velocity v directed parallel to the x axis with respect to the xy plane Let at time t 0 the object was at an arbitrary point c 0 0 If the xy plane rotates with a constant angular velocity w about the z axis then the velocity of the point with respect to z axis may be written as nbsp The xy plane rotates to an angle wt anticlockwise about the origin in time t c 0 is the position of the object at t 0 P is the position of the object at time t at a distance of R vt c v 0 v 2 w 2 v t c 2 v x v cos w t w v t c sin w t v y v sin w t w v t c cos w t displaystyle begin aligned v 0 amp sqrt v 2 omega 2 vt c 2 v x amp v cos omega t omega vt c sin omega t v y amp v sin omega t omega vt c cos omega t end aligned nbsp Here vt c is the modulus of the position vector of the particle at any time t vx is the velocity component along the x axis and vy is the component along the y axis The figure shown alongside explains this v x d t x v y d t y displaystyle begin aligned int v x dt amp x int v y dt amp y end aligned nbsp The above equations can be integrated by applying integration by parts leading to the following parametric equations x v t c cos w t y v t c sin w t displaystyle begin aligned x amp vt c cos omega t y amp vt c sin omega t end aligned nbsp Squaring the two equations and then adding and some small alterations results in the Cartesian equationx 2 y 2 v w arctan y x c displaystyle sqrt x 2 y 2 frac v omega cdot arctan frac y x c nbsp using the fact that wt 8 and 8 arctan y x or tan x 2 y 2 c w v y x displaystyle tan left left sqrt x 2 y 2 c right cdot frac omega v right frac y x nbsp Its polar form isr v w 8 c displaystyle r frac v omega cdot theta c nbsp Arc length and curvature edit nbsp Osculating circles of the Archimedean spiral tangent to the spiral and having the same curvature at the tangent point The spiral itself is not drawn but can be seen as the points where the circles are especially close to each other Given the parametrization in cartesian coordinatesf 8 r cos 8 r sin 8 b 8 cos 8 b 8 sin 8 displaystyle f colon theta mapsto r cos theta r sin theta b theta cos theta b theta sin theta nbsp the arc length from 81 to 82 is b 2 8 1 8 2 ln 8 1 8 2 8 1 8 2 displaystyle frac b 2 left theta sqrt 1 theta 2 ln left theta sqrt 1 theta 2 right right theta 1 theta 2 nbsp or equivalently b 2 8 1 8 2 arsinh 8 8 1 8 2 displaystyle frac b 2 left theta sqrt 1 theta 2 operatorname arsinh theta right theta 1 theta 2 nbsp The total length from 81 0 to 82 8 is therefore b 2 8 1 8 2 ln 8 1 8 2 displaystyle frac b 2 left theta sqrt 1 theta 2 ln left theta sqrt 1 theta 2 right right nbsp The curvature is given byk 8 2 2 b 8 2 1 3 2 displaystyle kappa frac theta 2 2 b left theta 2 1 right frac 3 2 nbsp Characteristics edit nbsp Archimedean spiral represented on a polar graphThe Archimedean spiral has the property that any ray from the origin intersects successive turnings of the spiral in points with a constant separation distance equal to 2pb if 8 is measured in radians hence the name arithmetic spiral In contrast to this in a logarithmic spiral these distances as well as the distances of the intersection points measured from the origin form a geometric progression The Archimedean spiral has two arms one for 8 gt 0 and one for 8 lt 0 The two arms are smoothly connected at the origin Only one arm is shown on the accompanying graph Taking the mirror image of this arm across the y axis will yield the other arm For large 8 a point moves with well approximated uniform acceleration along the Archimedean spiral while the spiral corresponds to the locations over time of a point moving away from a fixed point with a constant speed along a line which rotates with constant angular velocity 2 see contribution from Mikhail Gaichenkov As the Archimedean spiral grows its evolute asymptotically approaches a circle with radius v w General Archimedean spiral editSometimes the term Archimedean spiral is used for the more general group of spiralsr a b 8 1 c displaystyle r a b cdot theta frac 1 c nbsp The normal Archimedean spiral occurs when c 1 Other spirals falling into this group include the hyperbolic spiral c 1 Fermat s spiral c 2 and the lituus c 2 Applications editOne method of squaring the circle due to Archimedes makes use of an Archimedean spiral Archimedes also showed how the spiral can be used to trisect an angle Both approaches relax the traditional limitations on the use of straightedge and compass in ancient Greek geometric proofs 3 nbsp Mechanism of a scroll compressorThe Archimedean spiral has a variety of real world applications Scroll compressors used for compressing gases have rotors that can be made from two interleaved Archimedean spirals involutes of a circle of the same size that almost resemble Archimedean spirals 4 or hybrid curves Archimedean spirals can be found in spiral antenna which can be operated over a wide range of frequencies The coils of watch balance springs and the grooves of very early gramophone records form Archimedean spirals making the grooves evenly spaced although variable track spacing was later introduced to maximize the amount of music that could be cut onto a record 5 Asking for a patient to draw an Archimedean spiral is a way of quantifying human tremor this information helps in diagnosing neurological diseases Archimedean spirals are also used in digital light processing DLP projection systems to minimize the rainbow effect making it look as if multiple colors are displayed at the same time when in reality red green and blue are being cycled extremely quickly 6 Additionally Archimedean spirals are used in food microbiology to quantify bacterial concentration through a spiral platter 7 nbsp Atacama Large Millimeter Array image of LL PegasiThey are also used to model the pattern that occurs in a roll of paper or tape of constant thickness wrapped around a cylinder 8 9 Many dynamic spirals such as the Parker spiral of the solar wind or the pattern made by a Catherine s wheel are Archimedean For instance the star LL Pegasi shows an approximate Archimedean spiral in the dust clouds surrounding it thought to be ejected matter from the star that has been shepherded into a spiral by another companion star as part of a double star system 10 See also edit nbsp Mathematics portalArchimedes screw Water pumping mechanism 11 12 Fermat s spiral Spiral that surrounds equal area per turn Golden spiral Self similar curve related to golden ratio Hyperbolic spiral Spiral asymptotic to a line List of spirals Logarithmic spiral Self similar growth curve Spiral of Theodorus Polygonal curve made from right triangles Triple spiral symbol Various symbols with three fold rotational symmetryPages displaying short descriptions of redirect targetsReferences edit Bulmer Thomas Ivor Conon of Samos Dictionary of Scientific Biography Vol 3 p 391 Sloane N J A ed Sequence A091154 The On Line Encyclopedia of Integer Sequences OEIS Foundation Boyer Carl B 1968 A History of Mathematics Princeton New Jersey Princeton University Press pp 140 142 ISBN 0 691 02391 3 Sakata Hirotsugu Okuda Masayuki Fluid compressing device having coaxial spiral members Retrieved 2006 11 25 Penndorf Ron Early Development of the LP Archived from the original on 5 November 2005 Retrieved 2005 11 25 See the passage on Variable Groove Ballou Glen 2008 Handbook for Sound Engineers CRC Press p 1586 ISBN 9780240809694 Gilchrist J E Campbell J E Donnelly C B Peeler J T Delaney J M 1973 Spiral Plate Method for Bacterial Determination Applied Microbiology 25 2 244 52 doi 10 1128 AEM 25 2 244 252 1973 PMC 380780 PMID 4632851 Peressini Tony 3 February 2009 Joan s Paper Roll Problem PDF Archived from the original PDF on 3 November 2013 Retrieved 2014 10 06 Walser H Hilton P Pedersen J 2000 Symmetry Mathematical Association of America p 27 ISBN 9780883855324 Retrieved 2014 10 06 Kim Hyosun Trejo Alfonso Liu Sheng Yuan Sahai Raghvendra Taam Ronald E Morris Mark R Hirano Naomi Hsieh I Ta March 2017 The large scale nebular pattern of a superwind binary in an eccentric orbit Nature Astronomy 1 3 0060 arXiv 1704 00449 Bibcode 2017NatAs 1E 60K doi 10 1038 s41550 017 0060 S2CID 119433782 External links edit nbsp Wikimedia Commons has media related to Archimedean spirals Jonathan Matt making the Archimedean spiral interesting Video The surprising beauty of Mathematics TedX Talks Green Farms Weisstein Eric W Archimedes Spiral MathWorld archimedean spiral at PlanetMath Page with Java application to interactively explore the Archimedean spiral and its related curves Online exploration using JSXGraph JavaScript Archimedean spiral at mathcurve Retrieved from https en wikipedia org w index php title Archimedean spiral amp oldid 1188235880, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.