fbpx
Wikipedia

Ann Graybiel

Ann Martin Graybiel (born 1942) is an Institute Professor and a faculty member in the Department of Brain and Cognitive Sciences at the Massachusetts Institute of Technology. She is also an investigator at the McGovern Institute for Brain Research. She is an expert on the basal ganglia and the neurophysiology of habit formation, implicit learning, and her work is relevant to Parkinson's disease, Huntington's disease, obsessive–compulsive disorder, substance abuse and other disorders that affect the basal ganglia.

Ann Martin Graybiel
Graybiel receives the Medal of Science from President Bush in 2001
Born1942
Chestnut Hill, Massachusetts
Alma mater
OccupationNeuroscientist
Known for
Awards
Websitehttp://www.graybiel-lab.com/

Research edit

For much of her career, Graybiel has focused on the physiology of the striatum, a basal ganglia structure implicated in the control of movement, cognition, habit formation, and decision-making. In the late 1970s, Graybiel discovered that while striatal neurons appeared to be an amorphous mass, they were in fact organized into chemical compartments, which she termed striosomes.[1] Later research revealed links between striosomal abnormalities and neurological disorders, such as mood dysfunction in Huntington's disease[2] and depletion of dopamine in Parkinson's disease.[3]

Graybiel's subsequent research demonstrated how modular organization of the striatum relates to cognition, learning, and habit formation. She found that neurons project from areas in the sensory and motor cortices governing the same body part and cluster together in the striatum, forming matrisomes.[4] Graybiel went on to show that matrisomes exist for each body part and were organized into loops connecting the neocortex, a region responsible for cognition, perception and motor control, to the brain stem, a region coordinating movement.[5] Studies of rodents and primates revealed that matrisomes were crucial to habit formation.[6][7]

In later work, Graybiel demonstrated, first in the striatum and later in the infralimbic cortex, that a task-bracket or "chunking" pattern of neuronal activity emerges when a habit is formed, wherein neurons activate when a habitual task is initiated, show little activity during the task, and reactivate when the task is completed.[7][8]

In more recent work, Graybiel has focused on identifying specific pathways underlying aspects of behavior such as habit formation, learning and cognition, and decision-making, including being the first to analyze the effect of dopamine depletion on the activity of neurons affected by Parkinson's disease during behavioral tasks.[9][10]

Career edit

Graybiel majored in biology and chemistry at Harvard University, receiving her bachelor's degree in 1964.[11] After receiving an MA in biology from Tufts University in 1966, she began doctoral study in psychology and brain science at MIT under the direction of Hans-Lukas Teuber and Walle Nauta.[11] She received her PhD in 1971 and joined the MIT faculty in 1973.[12]

In 1994, Graybiel was one of 16 women faculty in the School of Science at MIT who drafted and co-signed a letter to the then-Dean of Science (now Chancellor of Berkeley) Robert Birgeneau, which started a campaign to highlight and challenge gender discrimination at MIT.[13]

Also in 1994, she was named the Walter A. Rosenblith Professor Neuroscience in the Department of Brain and Cognitive Science and was named an Investigator at the MIT McGovern Institute for Brain research in 2001.[12] She was named Institute Professor in 2008.[14]

Awards and recognition edit

In 2001, Graybiel was awarded the President's National Medal of Science for "her pioneering contributions to the understanding of the anatomy and physiology of the brain, including the structure, chemistry, and function of the pathways subserving thought and movement."[15] In 2012, she was awarded the Kavli Prize in Neuroscience, along with Cornelia Bargmann and Winfried Denk, "for elucidating basic neuronal mechanisms underlying perception and decision."[16]

In 2018, Graybiel won the Gruber Prize in Neuroscience along with Okihide Hikosaka and Wolfram Schultz.

Their work has fundamentally transformed the study of the basal ganglia and has led to influential new ideas about how the brain learns and retains new habits and skills, manages movements and processes rewards for learning and decision-making. It has also deepened our understanding of a wide range of neurodegenerative and neuropsychiatric disorders in which the basal ganglia and behavioral control is compromised.

"When these three extraordinary scientists began their careers, few people were paying much attention to the basal ganglia," says Dr. Robert Wurtz, NIH Distinguished Investigator and chair of the Selection Advisory Board to the Prize. "Today, thanks to their pioneering research, we now recognize the central role that this area of the brain plays in normal brain function and behavior. The significance of their work cannot be [over]stated, as it has also transformed our understanding of the neurobiology behind some of our most devastating brain disorders, including Parkinson's disease, Huntington's disease, and drug addiction."

Graybiel discovered that the striatum, the largest nucleus within the basal ganglia, has a complex, modular structure. She then followed this transformative discovery with studies describing the functionally of that architecture, including the finding that changes in striatal neural activity during the learning process lead to the formation of pathological habits, such as those that characterize obsessive compulsive disorder.[17]

She is a member of the US National Academy of Sciences, the American Academy of Arts and Sciences, the American Philosophical Society, the National Academy of Medicine (formerly Institute of Medicine),[12] and the Norwegian Academy of Science and Letters.[18]

References edit

  1. ^ Graybiel, AM; Ragsdale, Jr., CW (November 1978). "Histochemically distinct compartments in the striatum of human, monkey, and cat demonstrated by acetylthiocholinesterase staining". Proc Natl Acad Sci U S A. 75 (11) (published 1978): 5723–26. Bibcode:1978PNAS...75.5723G. doi:10.1073/pnas.75.11.5723. PMC 393041. PMID 103101.
  2. ^ Tippet, LJ; Waldvogel, HJ; Thomas, SJ; Hogg, VM; van Roon-Mom, W; Synek, BJ; Graybiel, AM; Faull, RL (Jan 2007). "Striosomes and mood dysfunction in Huntington's disease". Brain. 130 (1): 206–21. doi:10.1093/brain/awl243. PMID 17040921.
  3. ^ Roffler-Tarlov, S; Graybiel, AM (5 Jan 1984). "Weaver mutation has differential effects on the dopamine-containing innervation of the limbic and nonlimbic striatum". Nature. 307 (5946): 62–66. Bibcode:1984Natur.307...62R. doi:10.1038/307062a0. PMID 6690983. S2CID 4235703.
  4. ^ Flaherty, AW; Graybiel, AM (1991). "Corticostriatal transformations in the primate somatosensory system. Projections from physiologically mapped body-part representations". J Neurophysiol. 66 (4): 1249–63. doi:10.1152/jn.1991.66.4.1249. PMID 1722244.
  5. ^ Graybiel, AM; Toshihiko, A; Flaherty, AW; Kimura, M (1994). "The basal ganglia and adaptive motor control". Science. 265 (5180): 1826–31. Bibcode:1994Sci...265.1826G. doi:10.1126/science.8091209. JSTOR 2884650. PMID 8091209.
  6. ^ Illing, R.-B.; Graybiel, AM (1994). "Pattern formation in the developing superior colliculus: Ontogeny of the periodic architecture in the intermediate layers". Journal of Comparative Neurology. 340 (3): 311–27. doi:10.1002/cne.903400303. PMID 8188853. S2CID 37267745.
  7. ^ a b Graybiel, AM (1998). "The Basal Gangila and Chunking of Action Repertoires". Neurobiology of Learning and Memory. 70 (3): 119–36. doi:10.1006/nlme.1998.3843. PMID 9753592. S2CID 16824424.
  8. ^ Smith, KS; Graybiel, AM (July 2013). "A dual operator view of habitual behavior reflecting cortical and striatal dynamics". Neuron. 79 (2): 361–74. doi:10.1016/j.neuron.2013.05.038. PMC 3951965. PMID 23810540.
  9. ^ Hernandez, LF; Kubota, Y; Hu, D; Howe, MW; Lemaire, N; Graybiel, AM (2013). "Selective effects of dopamine depletion and L-DOPA therapy on learning-related firing dynamics of striatal neurons". Journal of Neuroscience. 33 (11): 4782–95. doi:10.1523/JNEUROSCI.3746-12.2013. PMC 3655722. PMID 23486949.
  10. ^ Trafton, Anne (12 March 2013). "MIT News". Breaking down the Parkinson’s pathway. Retrieved 23 October 2014.
  11. ^ a b . The Kavli Foundation. Archived from the original on 23 October 2014. Retrieved 23 October 2014.
  12. ^ a b c "Ann Graybiel". McGovern Institute for Brain Research at MIT. Retrieved 23 October 2014.
  13. ^ Zernike, Kate (2023). The Exceptions: Nancy Hopkins, MIT, and the Fight for Women in Science. New York, NY: Scribner. ISBN 978-1-9821-3183-8.
  14. ^ Ann Graybiel named Institute Professor – MIT News Office. Web.mit.edu (2008-11-03). Retrieved on 2012-06-25.
  15. ^ US NSF – The President's National Medal of Science: Recipient Details. Nsf.gov. Retrieved on 2012-06-25.
  16. ^ The Kavli Prize. Kavliprize.no. Retrieved on 2012-06-25.
  17. ^ "3 Pre-Eminent Neuroscientists Share 2018 Gruber Award For Pioneering Work on the Basal Ganglia". Neuroscience from Technology Networks. Retrieved 2020-09-20.
  18. ^ "Medlemmer - Utenlandske medlemmer - Den matematisk-naturvitenskapelige klasse". Norwegian Academy of Science and Letters. Retrieved 13 December 2023.

External links edit

  • Graybiel Lab
  • McGovern Institute for Brain Research at MIT
  • in the MIT Technology Review.

graybiel, martin, graybiel, born, 1942, institute, professor, faculty, member, department, brain, cognitive, sciences, massachusetts, institute, technology, also, investigator, mcgovern, institute, brain, research, expert, basal, ganglia, neurophysiology, habi. Ann Martin Graybiel born 1942 is an Institute Professor and a faculty member in the Department of Brain and Cognitive Sciences at the Massachusetts Institute of Technology She is also an investigator at the McGovern Institute for Brain Research She is an expert on the basal ganglia and the neurophysiology of habit formation implicit learning and her work is relevant to Parkinson s disease Huntington s disease obsessive compulsive disorder substance abuse and other disorders that affect the basal ganglia Ann Martin GraybielGraybiel receives the Medal of Science from President Bush in 2001Born1942Chestnut Hill MassachusettsAlma materMIT PhD Tufts University MA Harvard University BA OccupationNeuroscientistKnown forDiscoveries in NeuroscienceBasal gangliaParkinson s diseaseHuntington s diseaseobsessive compulsive disorderHabit formationImplicit learningSubstance abuseAwardsNational Medal of ScienceKavli PrizeGruber Prize in NeuroscienceWebsitehttp www graybiel lab com Contents 1 Research 2 Career 3 Awards and recognition 4 References 5 External linksResearch editFor much of her career Graybiel has focused on the physiology of the striatum a basal ganglia structure implicated in the control of movement cognition habit formation and decision making In the late 1970s Graybiel discovered that while striatal neurons appeared to be an amorphous mass they were in fact organized into chemical compartments which she termed striosomes 1 Later research revealed links between striosomal abnormalities and neurological disorders such as mood dysfunction in Huntington s disease 2 and depletion of dopamine in Parkinson s disease 3 Graybiel s subsequent research demonstrated how modular organization of the striatum relates to cognition learning and habit formation She found that neurons project from areas in the sensory and motor cortices governing the same body part and cluster together in the striatum forming matrisomes 4 Graybiel went on to show that matrisomes exist for each body part and were organized into loops connecting the neocortex a region responsible for cognition perception and motor control to the brain stem a region coordinating movement 5 Studies of rodents and primates revealed that matrisomes were crucial to habit formation 6 7 In later work Graybiel demonstrated first in the striatum and later in the infralimbic cortex that a task bracket or chunking pattern of neuronal activity emerges when a habit is formed wherein neurons activate when a habitual task is initiated show little activity during the task and reactivate when the task is completed 7 8 In more recent work Graybiel has focused on identifying specific pathways underlying aspects of behavior such as habit formation learning and cognition and decision making including being the first to analyze the effect of dopamine depletion on the activity of neurons affected by Parkinson s disease during behavioral tasks 9 10 Career editGraybiel majored in biology and chemistry at Harvard University receiving her bachelor s degree in 1964 11 After receiving an MA in biology from Tufts University in 1966 she began doctoral study in psychology and brain science at MIT under the direction of Hans Lukas Teuber and Walle Nauta 11 She received her PhD in 1971 and joined the MIT faculty in 1973 12 In 1994 Graybiel was one of 16 women faculty in the School of Science at MIT who drafted and co signed a letter to the then Dean of Science now Chancellor of Berkeley Robert Birgeneau which started a campaign to highlight and challenge gender discrimination at MIT 13 Also in 1994 she was named the Walter A Rosenblith Professor Neuroscience in the Department of Brain and Cognitive Science and was named an Investigator at the MIT McGovern Institute for Brain research in 2001 12 She was named Institute Professor in 2008 14 Awards and recognition editIn 2001 Graybiel was awarded the President s National Medal of Science for her pioneering contributions to the understanding of the anatomy and physiology of the brain including the structure chemistry and function of the pathways subserving thought and movement 15 In 2012 she was awarded the Kavli Prize in Neuroscience along with Cornelia Bargmann and Winfried Denk for elucidating basic neuronal mechanisms underlying perception and decision 16 In 2018 Graybiel won the Gruber Prize in Neuroscience along with Okihide Hikosaka and Wolfram Schultz Their work has fundamentally transformed the study of the basal ganglia and has led to influential new ideas about how the brain learns and retains new habits and skills manages movements and processes rewards for learning and decision making It has also deepened our understanding of a wide range of neurodegenerative and neuropsychiatric disorders in which the basal ganglia and behavioral control is compromised When these three extraordinary scientists began their careers few people were paying much attention to the basal ganglia says Dr Robert Wurtz NIH Distinguished Investigator and chair of the Selection Advisory Board to the Prize Today thanks to their pioneering research we now recognize the central role that this area of the brain plays in normal brain function and behavior The significance of their work cannot be over stated as it has also transformed our understanding of the neurobiology behind some of our most devastating brain disorders including Parkinson s disease Huntington s disease and drug addiction Graybiel discovered that the striatum the largest nucleus within the basal ganglia has a complex modular structure She then followed this transformative discovery with studies describing the functionally of that architecture including the finding that changes in striatal neural activity during the learning process lead to the formation of pathological habits such as those that characterize obsessive compulsive disorder 17 She is a member of the US National Academy of Sciences the American Academy of Arts and Sciences the American Philosophical Society the National Academy of Medicine formerly Institute of Medicine 12 and the Norwegian Academy of Science and Letters 18 References edit Graybiel AM Ragsdale Jr CW November 1978 Histochemically distinct compartments in the striatum of human monkey and cat demonstrated by acetylthiocholinesterase staining Proc Natl Acad Sci U S A 75 11 published 1978 5723 26 Bibcode 1978PNAS 75 5723G doi 10 1073 pnas 75 11 5723 PMC 393041 PMID 103101 Tippet LJ Waldvogel HJ Thomas SJ Hogg VM van Roon Mom W Synek BJ Graybiel AM Faull RL Jan 2007 Striosomes and mood dysfunction in Huntington s disease Brain 130 1 206 21 doi 10 1093 brain awl243 PMID 17040921 Roffler Tarlov S Graybiel AM 5 Jan 1984 Weaver mutation has differential effects on the dopamine containing innervation of the limbic and nonlimbic striatum Nature 307 5946 62 66 Bibcode 1984Natur 307 62R doi 10 1038 307062a0 PMID 6690983 S2CID 4235703 Flaherty AW Graybiel AM 1991 Corticostriatal transformations in the primate somatosensory system Projections from physiologically mapped body part representations J Neurophysiol 66 4 1249 63 doi 10 1152 jn 1991 66 4 1249 PMID 1722244 Graybiel AM Toshihiko A Flaherty AW Kimura M 1994 The basal ganglia and adaptive motor control Science 265 5180 1826 31 Bibcode 1994Sci 265 1826G doi 10 1126 science 8091209 JSTOR 2884650 PMID 8091209 Illing R B Graybiel AM 1994 Pattern formation in the developing superior colliculus Ontogeny of the periodic architecture in the intermediate layers Journal of Comparative Neurology 340 3 311 27 doi 10 1002 cne 903400303 PMID 8188853 S2CID 37267745 a b Graybiel AM 1998 The Basal Gangila and Chunking of Action Repertoires Neurobiology of Learning and Memory 70 3 119 36 doi 10 1006 nlme 1998 3843 PMID 9753592 S2CID 16824424 Smith KS Graybiel AM July 2013 A dual operator view of habitual behavior reflecting cortical and striatal dynamics Neuron 79 2 361 74 doi 10 1016 j neuron 2013 05 038 PMC 3951965 PMID 23810540 Hernandez LF Kubota Y Hu D Howe MW Lemaire N Graybiel AM 2013 Selective effects of dopamine depletion and L DOPA therapy on learning related firing dynamics of striatal neurons Journal of Neuroscience 33 11 4782 95 doi 10 1523 JNEUROSCI 3746 12 2013 PMC 3655722 PMID 23486949 Trafton Anne 12 March 2013 MIT News Breaking down the Parkinson s pathway Retrieved 23 October 2014 a b Neuroscience Laureate Biographies The Kavli Foundation Archived from the original on 23 October 2014 Retrieved 23 October 2014 a b c Ann Graybiel McGovern Institute for Brain Research at MIT Retrieved 23 October 2014 Zernike Kate 2023 The Exceptions Nancy Hopkins MIT and the Fight for Women in Science New York NY Scribner ISBN 978 1 9821 3183 8 Ann Graybiel named Institute Professor MIT News Office Web mit edu 2008 11 03 Retrieved on 2012 06 25 US NSF The President s National Medal of Science Recipient Details Nsf gov Retrieved on 2012 06 25 The Kavli Prize Kavliprize no Retrieved on 2012 06 25 3 Pre Eminent Neuroscientists Share 2018 Gruber Award For Pioneering Work on the Basal Ganglia Neuroscience from Technology Networks Retrieved 2020 09 20 Medlemmer Utenlandske medlemmer Den matematisk naturvitenskapelige klasse Norwegian Academy of Science and Letters Retrieved 13 December 2023 External links edit nbsp Wikimedia Commons has media related to Ann Graybiel Graybiel Lab McGovern Institute for Brain Research at MIT Profile of Graybiel in the MIT Technology Review Retrieved from https en wikipedia org w index php title Ann Graybiel amp oldid 1217186132, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.