fbpx
Wikipedia

Allele frequency

Allele frequency, or gene frequency, is the relative frequency of an allele (variant of a gene) at a particular locus in a population, expressed as a fraction or percentage.[1] Specifically, it is the fraction of all chromosomes in the population that carry that allele over the total population or sample size. Microevolution is the change in allele frequencies that occurs over time within a population.

Given the following:

  1. A particular locus on a chromosome and a given allele at that locus
  2. A population of N individuals with ploidy n, i.e. an individual carries n copies of each chromosome in their somatic cells (e.g. two chromosomes in the cells of diploid species)
  3. The allele exists in i chromosomes in the population

then the allele frequency is the fraction of all the occurrences i of that allele and the total number of chromosome copies across the population, i/(nN).

The allele frequency is distinct from the genotype frequency, although they are related, and allele frequencies can be calculated from genotype frequencies.[1]

In population genetics, allele frequencies are used to describe the amount of variation at a particular locus or across multiple loci. When considering the ensemble of allele frequencies for many distinct loci, their distribution is called the allele frequency spectrum.

Calculation of allele frequencies from genotype frequencies

The actual frequency calculations depend on the ploidy of the species for autosomal genes.

Monoploids

The frequency (p) of an allele A is the fraction of the number of copies (i) of the A allele and the population or sample size (N), so

 

Diploids

If  ,  , and   are the frequencies of the three genotypes at a locus with two alleles, then the frequency p of the A-allele and the frequency q of the B-allele in the population are obtained by counting alleles.[2]

 
 

Because p and q are the frequencies of the only two alleles present at that locus, they must sum to 1. To check this:

 
  and  

If there are more than two different allelic forms, the frequency for each allele is simply the frequency of its homozygote plus half the sum of the frequencies for all the heterozygotes in which it appears.

(For 3 alleles see Allele § Allele and genotype frequencies)

Allele frequency can always be calculated from genotype frequency, whereas the reverse requires that the Hardy–Weinberg conditions of random mating apply.

Example

Consider a locus that carries two alleles, A and B. In a diploid population there are three possible genotypes, two homozygous genotypes (AA and BB), and one heterozygous genotype (AB). If we sample 10 individuals from the population, and we observe the genotype frequencies

  1. freq (AA) = 6
  2. freq (AB) = 3
  3. freq (BB) = 1

then there are   observed copies of the A allele and   of the B allele, out of 20 total chromosome copies. The frequency p of the A allele is p = 15/20 = 0.75, and the frequency q of the B allele is q = 5/20 = 0.25.

Dynamics

Population genetics describes the genetic composition of a population, including allele frequencies, and how allele frequencies are expected to change over time. The Hardy–Weinberg law describes the expected equilibrium genotype frequencies in a diploid population after random mating. Random mating alone does not change allele frequencies, and the Hardy–Weinberg equilibrium assumes an infinite population size and a selectively neutral locus.[1]

In natural populations natural selection (adaptation mechanism), gene flow, and mutation combine to change allele frequencies across generations. Genetic drift causes changes in allele frequency from random sampling due to offspring number variance in a finite population size, with small populations experiencing larger per generation fluctuations in frequency than large populations. There is also a theory that second adaptation mechanism exists – niche construction[3] According to extended evolutionary synthesis adaptation occur due to natural selection, environmental induction, non-genetic inheritance, learning and cultural transmission.[4] An allele at a particular locus may also confer some fitness effect for an individual carrying that allele, on which natural selection acts. Beneficial alleles tend to increase in frequency, while deleterious alleles tend to decrease in frequency. Even when an allele is selectively neutral, selection acting on nearby genes may also change its allele frequency through hitchhiking or background selection.

While heterozygosity at a given locus decreases over time as alleles become fixed or lost in the population, variation is maintained in the population through new mutations and gene flow due to migration between populations. For details, see population genetics.

See also

References

  1. ^ a b c Gillespie, John H. (2004). Population genetics : a concise guide (2. ed.). Baltimore, Md.: The Johns Hopkins University Press. ISBN 978-0801880087.
  2. ^ "Population and Evolutionary Genetics". ndsu.edu.
  3. ^ Scott-Phillips, T. C.; Laland, K. N.; Shuker, D. M.; Dickins, T. E.; West, S. A. (2014). "The Niche Construction Perspective: A Critical Appraisal". Evolution. 68 (5): 1231–1243. doi:10.1111/evo.12332. PMC 4261998. PMID 24325256.
  4. ^ Laland, K. N.; Uller, T.; Feldman, M. W.; Sterelny, K.; Müller, G. B.; Moczek, A.; Jablonka, E.; Odling-Smee, J. (Aug 2015). "The extended evolutionary synthesis: its structure, assumptions and predictions". Proc Biol Sci. 282 (1813): 20151019. doi:10.1098/rspb.2015.1019. PMC 4632619. PMID 26246559.

External links

  • ALFRED database
  • Allele Frequencies in Worldwide Populations

Cheung, KH; Osier MV; Kidd JR; Pakstis AJ; Miller PL; Kidd KK (2000). "ALFRED: an allele frequency database for diverse populations and DNA polymorphisms". Nucleic Acids Research. 28 (1): 361–3. doi:10.1093/nar/28.1.361. PMC 102486. PMID 10592274.

Middleton, D; Menchaca L; Rood H; Komerofsky R (2002). "New allele frequency database: www.allelefrequencies.net". Tissue Antigens. 61 (5): 403–7. doi:10.1034/j.1399-0039.2003.00062.x. PMID 12753660.

allele, frequency, gene, frequency, relative, frequency, allele, variant, gene, particular, locus, population, expressed, fraction, percentage, specifically, fraction, chromosomes, population, that, carry, that, allele, over, total, population, sample, size, m. Allele frequency or gene frequency is the relative frequency of an allele variant of a gene at a particular locus in a population expressed as a fraction or percentage 1 Specifically it is the fraction of all chromosomes in the population that carry that allele over the total population or sample size Microevolution is the change in allele frequencies that occurs over time within a population Given the following A particular locus on a chromosome and a given allele at that locus A population of N individuals with ploidy n i e an individual carries n copies of each chromosome in their somatic cells e g two chromosomes in the cells of diploid species The allele exists in i chromosomes in the populationthen the allele frequency is the fraction of all the occurrences i of that allele and the total number of chromosome copies across the population i nN The allele frequency is distinct from the genotype frequency although they are related and allele frequencies can be calculated from genotype frequencies 1 In population genetics allele frequencies are used to describe the amount of variation at a particular locus or across multiple loci When considering the ensemble of allele frequencies for many distinct loci their distribution is called the allele frequency spectrum Contents 1 Calculation of allele frequencies from genotype frequencies 1 1 Monoploids 1 2 Diploids 1 2 1 Example 2 Dynamics 3 See also 4 References 5 External linksCalculation of allele frequencies from genotype frequencies EditThe actual frequency calculations depend on the ploidy of the species for autosomal genes Monoploids Edit The frequency p of an allele A is the fraction of the number of copies i of the A allele and the population or sample size N so p i N displaystyle p i N Diploids Edit If f A A displaystyle f mathbf AA f A B displaystyle f mathbf AB and f B B displaystyle f mathbf BB are the frequencies of the three genotypes at a locus with two alleles then the frequency p of the A allele and the frequency q of the B allele in the population are obtained by counting alleles 2 p f A A 1 2 f A B frequency of A displaystyle p f mathbf AA frac 1 2 f mathbf AB mbox frequency of A q f B B 1 2 f A B frequency of B displaystyle q f mathbf BB frac 1 2 f mathbf AB mbox frequency of B Because p and q are the frequencies of the only two alleles present at that locus they must sum to 1 To check this p q f A A f B B f A B 1 displaystyle p q f mathbf AA f mathbf BB f mathbf AB 1 q 1 p displaystyle q 1 p and p 1 q displaystyle p 1 q If there are more than two different allelic forms the frequency for each allele is simply the frequency of its homozygote plus half the sum of the frequencies for all the heterozygotes in which it appears For 3 alleles see Allele Allele and genotype frequencies Allele frequency can always be calculated from genotype frequency whereas the reverse requires that the Hardy Weinberg conditions of random mating apply Example Edit Consider a locus that carries two alleles A and B In a diploid population there are three possible genotypes two homozygous genotypes AA and BB and one heterozygous genotype AB If we sample 10 individuals from the population and we observe the genotype frequencies freq AA 6 freq AB 3 freq BB 1then there are 6 2 3 15 displaystyle 6 times 2 3 15 observed copies of the A allele and 1 2 3 5 displaystyle 1 times 2 3 5 of the B allele out of 20 total chromosome copies The frequency p of the A allele is p 15 20 0 75 and the frequency q of the B allele is q 5 20 0 25 Dynamics EditPopulation genetics describes the genetic composition of a population including allele frequencies and how allele frequencies are expected to change over time The Hardy Weinberg law describes the expected equilibrium genotype frequencies in a diploid population after random mating Random mating alone does not change allele frequencies and the Hardy Weinberg equilibrium assumes an infinite population size and a selectively neutral locus 1 In natural populations natural selection adaptation mechanism gene flow and mutation combine to change allele frequencies across generations Genetic drift causes changes in allele frequency from random sampling due to offspring number variance in a finite population size with small populations experiencing larger per generation fluctuations in frequency than large populations There is also a theory that second adaptation mechanism exists niche construction 3 According to extended evolutionary synthesis adaptation occur due to natural selection environmental induction non genetic inheritance learning and cultural transmission 4 An allele at a particular locus may also confer some fitness effect for an individual carrying that allele on which natural selection acts Beneficial alleles tend to increase in frequency while deleterious alleles tend to decrease in frequency Even when an allele is selectively neutral selection acting on nearby genes may also change its allele frequency through hitchhiking or background selection While heterozygosity at a given locus decreases over time as alleles become fixed or lost in the population variation is maintained in the population through new mutations and gene flow due to migration between populations For details see population genetics See also EditAllele frequency net database Allele frequency spectrum Single nucleotide polymorphismReferences Edit a b c Gillespie John H 2004 Population genetics a concise guide 2 ed Baltimore Md The Johns Hopkins University Press ISBN 978 0801880087 Population and Evolutionary Genetics ndsu edu Scott Phillips T C Laland K N Shuker D M Dickins T E West S A 2014 The Niche Construction Perspective A Critical Appraisal Evolution 68 5 1231 1243 doi 10 1111 evo 12332 PMC 4261998 PMID 24325256 Laland K N Uller T Feldman M W Sterelny K Muller G B Moczek A Jablonka E Odling Smee J Aug 2015 The extended evolutionary synthesis its structure assumptions and predictions Proc Biol Sci 282 1813 20151019 doi 10 1098 rspb 2015 1019 PMC 4632619 PMID 26246559 External links EditALFRED database EHSTRAFD org Earth Human STR Allele Frequencies Database VWA 17 Allele Frequency in Human Population Poster Allele Frequencies in Worldwide PopulationsCheung KH Osier MV Kidd JR Pakstis AJ Miller PL Kidd KK 2000 ALFRED an allele frequency database for diverse populations and DNA polymorphisms Nucleic Acids Research 28 1 361 3 doi 10 1093 nar 28 1 361 PMC 102486 PMID 10592274 Middleton D Menchaca L Rood H Komerofsky R 2002 New allele frequency database www allelefrequencies net Tissue Antigens 61 5 403 7 doi 10 1034 j 1399 0039 2003 00062 x PMID 12753660 Retrieved from https en wikipedia org w index php title Allele frequency amp oldid 1078566360, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.