fbpx
Wikipedia

Cachexia

Cachexia (/kəˈkɛksiə/[1]) is a complex syndrome associated with an underlying illness, causing ongoing muscle loss that is not entirely reversed with nutritional supplementation. A range of diseases can cause cachexia, most commonly cancer, congestive heart failure, chronic obstructive pulmonary disease, chronic kidney disease, and AIDS. Systemic inflammation from these conditions can cause detrimental changes to metabolism and body composition. In contrast to weight loss from inadequate caloric intake, cachexia causes mostly muscle loss instead of fat loss. Diagnosis of cachexia can be difficult due to the lack of well-established diagnostic criteria. Cachexia can improve with treatment of the underlying illness but other treatment approaches have limited benefit. Cachexia is associated with increased mortality and poor quality of life.

Cachexia
Other namesWasting syndrome
Processes and mechanisms related to cancer-associated cachexia
SpecialtyOncology, Internal Medicine, Physical Medicine and Rehabilitation
Symptomssudden weight loss, altered eating signals
Prognosisvery poor
Frequency1%
Deaths1.5 to 2 million people a year

The term is from Greek κακός kakos 'bad' and ἕξις hexis 'condition'.

Causes

Cachexia can be caused by diverse medical conditions, but is most often associated with end-stage cancer, known as cancer cachexia. About 50% of all cancer patients develop cachexia. Those with upper gastrointestinal and pancreatic cancers have the highest frequency of developing a cachexic symptom. Prevalence of cachexia rises in more advanced stages and is estimated to affect 80% of terminal cancer patients.[2]

Congestive heart failure, AIDS, chronic obstructive pulmonary disease, and chronic kidney disease are other conditions that often cause cachexia.[3] Cachexia can also be the result of advanced stages of cystic fibrosis, multiple sclerosis, motor neuron disease, Parkinson's disease, dementia, tuberculosis, multiple system atrophy, mercury poisoning, Crohn's disease, trypanosomiasis, rheumatoid arthritis, and celiac disease as well as other systemic diseases.[4][5]

Mechanism

The exact mechanism in which these diseases cause cachexia is poorly understood, and likely is multifactorial with multiple disease pathways involved. Inflammatory cytokines appear to play a central role including tumor necrosis factor (TNF) (which is also nicknamed 'cachexin' or 'cachectin'), interferon gamma and interleukin 6. TNF has been shown to have a direct catabolic effect on skeletal muscle and adipose tissue through the ubiquitin proteasome pathway. This mechanism involves the formation of reactive oxygen species leading to upregulation of the transcription factor NF-κB. NF-κB is a known regulator of the genes that encode cytokines and cytokine receptors. The increased production of cytokines induces proteolysis and breakdown of myofibrillar proteins.[6] Systemic inflammation also causes reduced protein synthesis through inhibition of the Akt/mTOR pathway.[7]

Although many different tissues and cell types may be responsible for the increase in circulating cytokines, evidence indicates tumors themselves are an important source of factors that may promote cachexia in cancer. Tumor-derived molecules such as lipid mobilizing factor, proteolysis-inducing factor, and mitochondrial uncoupling proteins may induce protein degradation and contribute to cachexia.[8] Uncontrolled inflammation in cachexia can lead to an elevated resting metabolic rate, further increasing the demands for protein and energy sources.[7]

There is also evidence of alteration in feeding control loops in cachexia. High levels of leptin, a hormone secreted by adipocytes, block the release of neuropeptide Y, which is the most potent feeding-stimulatory peptide in the hypothalamic orexigenic network, leading to decreased energy intake despite the high metabolic demand for nutrients.[8]

Diagnosis

Diagnostic guidelines and criteria have only recently been proposed despite the prevalence of cachexia and varying criteria, the primary features of cachexia include progressive depletion of muscle and fat mass, reduced food intake, abnormal metabolism of carbohydrate, protein, and fat, reduced quality of life, and increased physical impairment.[9]

Historically, body weight changes were used as the primary metrics of cachexia, including low body mass index and involuntary weight loss of more than 10%. Using weight alone is limited by the presence of edema, tumor mass and the high prevalence of obesity in the general population.[10] Weight-based criteria do not take into account changes in body composition, especially loss of lean body mass.

In the attempt to include a broader evaluation of the burden of cachexia, diagnostic criteria using assessments of laboratory metrics and symptoms in addition to weight have been proposed. The criteria included weight loss of at least 5% in 12 months or low body mass index (less than 22  kg/m2) with at least three of the following features: decreased muscle strength, fatigue, anorexia, low fat‐free mass index, or abnormal biochemistry (increased inflammatory markers, anemia, low serum albumin).[11] In cancer patients, cachexia is diagnosed from unintended weight loss of more than 5%. For cancer patients with a body mass index of less than 20  kg/m2, cachexia is diagnosed after the unintended weight loss of more than 2%. Additionally, it can be diagnosed through sarcopenia, or loss of skeletal muscle mass.[12]

Laboratory markers are used in evaluation of people with cachexia, including albumin, prealbumin, C-reactive protein, or hemoglobin. However, laboratory metrics and cut-off values are not standardized across different diagnostic criteria. Acute phase reactants (IL-6, IL-1b, tumor necrosis factor-a, IL-8, interferon-g) are sometimes measured but correlate poorly with outcomes. There are no biomarkers to identify people with cancer who may develop cachexia.[9][10]

In the effort to better classify cachexia severity, several scoring systems have been proposed including the Cachexia Staging Score (CSS) and Cachexia Score (CASCO). The CSS takes into account weight loss, subjective reporting of muscle function, performance status, appetite loss, and laboratory changes to categorize patients into non-cachexia, pre-cachexia, cachexia, and refractory cachexia. The Cachexia SCOre (CASCO) is another validated score that includes evaluation of body weight loss and composition, inflammation, metabolic disturbances, immunosuppression, physical performance, anorexia, and quality of life.[10]

Evaluation of changes in body composition is limited by the difficulty in measuring muscle mass and health in a non-invasive and cost-effective way. Imaging with quantification of muscle mass has been investigated including bioelectrical impedance analysis, computed tomography, dual-energy X-ray absorptiometry (DEXA), and magnetic resonance imaging but are not widely used.[10]

Definition

Identification, treatment, and research of cachexia have historically been limited by the lack of a widely accepted definition of cachexia. In 2011, an international consensus group adopted a definition of cachexia as "a multifactorial syndrome defined by an ongoing loss of skeletal muscle mass (with or without loss of fat mass) that can be partially but not entirely reversed by conventional nutritional support."[13]

Cachexia differs from weight loss due to malnutrition from malabsorption, anorexia nervosa, or anorexia due to major depressive disorder. Weight loss from inadequate caloric intake generally causes fat loss before muscle loss, whereas cachexia causes predominantly muscle wasting. Cachexia is also distinct from sarcopenia, or age-related muscle loss, although they often co-exist.[11]

Treatment

The management of cachexia depends on the underlying cause, the general prognosis, and the needs of the person affected.[14] The most effective approach to cachexia is treating the underlying disease process. An example is the reduction in cachexia from AIDS by highly active antiretroviral therapy.[15] However this is often not possible or maybe inadequate to reverse the cachexia syndrome in other diseases. Approaches to mitigate muscle loss include exercise, nutritional therapies, and medications.

Exercise

Therapy that includes regular physical exercise can be recommended for the treatment of cachexia due to the positive effects of exercise on skeletal muscle but current evidence remains uncertain as to its effectiveness, acceptability and safety for cancer patients.[16] Individuals with cachexia generally report low levels of physical activity and few engage in an exercise routine, owing to low motivation to exercise and a belief that exercising may worsen their symptoms or cause harm.[17]

Medications

Appetite stimulant medications are used to treat cachexia to increase food intake, but are not effective in stopping muscle wasting and may have detrimental side effects. Appetite stimulants include glucocorticoids, cannabinoids, or progestins such as megestrol acetate.[9][18][19] Anti-emetics such as 5-HT3 antagonists are also commonly used in cancer cachexia if nausea is a prominent symptom.[6]

Anabolic-androgenic steroids like oxandrolone may be beneficial in cachexia but their use is recommended for a maximum of two weeks since a longer duration of treatment increases side effects.[19][20] Whilst preliminary studies have suggested thalidomide may be useful, a Cochrane review found no evidence to make an informed decision about the use of this drug in cancer patients with cachexia.[21]

Nutrition

The increased metabolic rate and appetite suppression common in cachexia can compound muscle loss.[7] Studies using a calorie-dense protein supplementation have suggested at least weight stabilization can be achieved, although improvements in lean body mass have not been observed in these studies.[6]

Supplements

Administration of exogenous amino acids have been investigated to serve as a protein-sparing metabolic fuel by providing substrates for both muscle metabolism and gluconeogenesis. The branched-chain amino acids leucine and valine may have potential in inhibiting overexpression of protein breakdown pathways.[22] The amino acid glutamine has been used as a component of oral supplementation to reverse cachexia in people with advanced cancer[23] or HIV/AIDS.[24]

β-hydroxy β-methylbutyrate (HMB) is a metabolite of leucine that acts as a signaling molecule to stimulate protein synthesis. Studies showed positive results for chronic pulmonary disease, hip fracture, and in AIDS‐related and cancer‐related cachexia. However, many of these clinical studies used HMB as a component of combination treatment with glutamine, arginine, leucine, higher dietary protein and/or vitamins, which limits the assessment of the efficacy of HMB alone.[25][26]

Epidemiology

Accurate epidemiological data on the prevalence of cachexia is lacking due to changing diagnostic criteria and under-identification of people with the disorder.[27] It is estimated that cachexia from any disease is estimated to affect more than 5 million people in the United States.[9] The prevalence of cachexia is growing and estimated at 1% of the population. The prevalence is lower in Asia but due to the larger population, represents a similar burden. Cachexia is also a significant problem in South America and Africa.[27]

The most frequent causes of cachexia in the United States by population prevalence are: 1) chronic obstructive pulmonary disease (COPD), 2) heart failure, 3) cancer cachexia, 4) chronic kidney disease. The prevalence of cachexia ranges from 15 to 60% among people with cancer, increasing to an estimated 80% in terminal cancer.[2] This wide range is attributed to differences in cachexia definition, variability in cancer populations, and timing of diagnosis.[9] Although the prevalence of cachexia among people with COPD or heart failure is lower (estimated 5% to 20%), the large number of people with these conditions dramatically increases the total cachexia burden.[5][27]

Cachexia contributes to significant loss of function and healthcare utilization. Estimates using the National Inpatient Sample in the United States suggest that cachexia accounted for 177,640 hospital stays in 2016.[28] Cachexia is considered the immediate cause of death of many people with cancer, estimated between 22 and 40%.[29]

History

The word "cachexia" is derived from the Greek words "Kakos" (bad) and "hexis" (condition). English ophthalmologist John Zachariah Laurence was the first to use the phrase "cancerous cachexia", doing so in 1858. He applied the phrase to the chronic wasting associated with malignancy. It was not until 2011 that the term "cancer-associated cachexia" was given a formal definition, with a publication by Kenneth Fearon. Fearon defined it as "a multifactorial syndrome characterized by ongoing loss of skeletal muscle (with or without loss of fat mass) that cannot be fully reversed by conventional nutritional support and leads to progressive functional impairment".[12]

Research

Several medications are under investigation or have been previously trialed for use in cachexia but are currently not in widespread clinical use:

Medical marijuana has been allowed for the treatment of cachexia in some US states, such as Illinois, Maryland, Delaware, Nevada, Michigan, Washington, Oregon, California, Colorado, New Mexico, Arizona, Vermont, New Jersey, Rhode Island, Maine, and New York [33][34] Hawaii[35] and Connecticut.[18][36]

Multimodal therapy

Despite the extensive investigation into single therapeutic targets for cachexia, the most effective treatments use multi-targeted therapies. In Europe, a combination of non-drug approaches including physical training, nutritional counseling, and psychotherapeutic intervention are used in belief this approach may be more effective than monotherapy.[19] Administration of anti-inflammatory drugs showed efficacy and safety in the treatment of people with advanced cancer cachexia.[30]

See also

References

  1. ^ . Lexico Dictionaries | English. Archived from the original on November 8, 2019.
  2. ^ a b Fearon KC, Moses AG (September 2002). "Cancer cachexia". International Journal of Cardiology. 85 (1): 73–81. doi:10.1016/S0167-5273(02)00235-8. PMID 12163211.
  3. ^ a b c d Ebner N, Springer J, Kalantar-Zadeh K, Lainscak M, Doehner W, Anker SD, von Haehling S (July 2013). "Mechanism and novel therapeutic approaches to wasting in chronic disease". Maturitas. 75 (3): 199–206. doi:10.1016/j.maturitas.2013.03.014. PMID 23664695. S2CID 42148927.
  4. ^ Meresse B, Ripoche J, Heyman M, Cerf-Bensussan N (January 2009). "Celiac disease: from oral tolerance to intestinal inflammation, autoimmunity and lymphomagenesis". Mucosal Immunology. 2 (1): 8–23. doi:10.1038/mi.2008.75. PMID 19079330. S2CID 24980464.
  5. ^ a b Morley JE, Thomas DR, Wilson MM (April 2006). "Cachexia: pathophysiology and clinical relevance". The American Journal of Clinical Nutrition. 83 (4): 735–43. doi:10.1093/ajcn/83.4.735. PMID 16600922.
  6. ^ a b c Kumar NB, Kazi A, Smith T, Crocker T, Yu D, Reich RR, Reddy K, Hastings S, Exterman M, Balducci L, Dalton K, Bepler G (December 2010). "Cancer cachexia: traditional therapies and novel molecular mechanism-based approaches to treatment". Current Treatment Options in Oncology. 11 (3–4): 107–17. doi:10.1007/s11864-010-0127-z. PMC 3016925. PMID 21128029.
  7. ^ a b c Argilés JM, Campos N, Lopez-Pedrosa JM, Rueda R, Rodriguez-Mañas L (September 2016). "Skeletal Muscle Regulates Metabolism via Interorgan Crosstalk: Roles in Health and Disease". Journal of the American Medical Directors Association. 17 (9): 789–96. doi:10.1016/j.jamda.2016.04.019. PMID 27324808.
  8. ^ a b Martignoni ME, Kunze P, Friess H (November 2003). "Cancer cachexia". Molecular Cancer. 2 (1): 36. doi:10.1186/1476-4598-2-36. PMC 280692. PMID 14613583.
  9. ^ a b c d e Peterson SJ, Mozer M (February 2017). "Differentiating Sarcopenia and Cachexia Among Patients With Cancer". Nutrition in Clinical Practice. 32 (1): 30–39. doi:10.1177/0884533616680354. PMID 28124947. S2CID 206555460.
  10. ^ a b c d Dev R (January 2019). "Measuring cachexia-diagnostic criteria". Annals of Palliative Medicine. 8 (1): 24–32. doi:10.21037/apm.2018.08.07. PMID 30525765.
  11. ^ a b Evans WJ, Morley JE, Argilés J, Bales C, Baracos V, Guttridge D, et al. (December 2008). "Cachexia: a new definition". Clinical Nutrition. 27 (6): 793–9. doi:10.1016/j.clnu.2008.06.013. PMID 18718696. S2CID 206821612.
  12. ^ a b Biswas, Anup K.; Acharyya, Swarnali (2020). "Cancer-Associated Cachexia: A Systemic Consequence of Cancer Progression". Annual Review of Cancer Biology. 4: 391–411. doi:10.1146/annurev-cancerbio-030419-033642.
  13. ^ Fearon K, Strasser F, Anker SD, Bosaeus I, Bruera E, Fainsinger RL, et al. (May 2011). "Definition and classification of cancer cachexia: an international consensus". The Lancet Oncology. 12 (5): 489–95. doi:10.1016/s1470-2045(10)70218-7. PMID 21296615.
  14. ^ (PDF). Archived from the original (PDF) on 2014-05-14. Retrieved 23 February 2014.
  15. ^ "AIDS Wasting Syndrome". WebMD.
  16. ^ Grande AJ, Silva V, Sawaris Neto L, Teixeira Basmage JP, Peccin MS, Maddocks M (March 2021). "Exercise for cancer cachexia in adults". The Cochrane Database of Systematic Reviews. 2021 (3): CD010804. doi:10.1002/14651858.CD010804.pub3. PMC 8094916. PMID 33735441.
  17. ^ Wasley D, Gale N, Roberts S, Backx K, Nelson A, van Deursen R, Byrne A (February 2018). "Patients with established cancer cachexia lack the motivation and self-efficacy to undertake regular structured exercise" (PDF). Psycho-Oncology. 27 (2): 458–464. doi:10.1002/pon.4512. hdl:10369/8759. PMID 28758698. S2CID 206378678.
  18. ^ a b Gagnon B, Bruera E (May 1998). "A review of the drug treatment of cachexia associated with cancer". Drugs. 55 (5): 675–88. doi:10.2165/00003495-199855050-00005. PMID 9585863. S2CID 22180434.
  19. ^ a b c d e f g h . European Palliative Care Research Collaborative. Archived from the original on 2 May 2014. Retrieved 23 February 2014.
  20. ^ Giovanni Mantovani (6 October 2007). Cachexia and Wasting: A Modern Approach. Springer Science & Business Media. pp. 673–. ISBN 978-88-470-0552-5.
  21. ^ Reid J, Mills M, Cantwell M, Cardwell CR, Murray LJ, Donnelly M (April 2012). "Thalidomide for managing cancer cachexia". The Cochrane Database of Systematic Reviews. 2021 (4): CD008664. doi:10.1002/14651858.cd008664.pub2. PMC 6353113. PMID 22513961.
  22. ^ Eley HL, Russell ST, Tisdale MJ (October 2007). "Effect of branched-chain amino acids on muscle atrophy in cancer cachexia". The Biochemical Journal. 407 (1): 113–20. doi:10.1042/BJ20070651. PMC 2267397. PMID 17623010.
  23. ^ May PE, Barber A, D'Olimpio JT, Hourihane A, Abumrad NN (April 2002). "Reversal of cancer-related wasting using oral supplementation with a combination of beta-hydroxy-beta-methylbutyrate, arginine, and glutamine". American Journal of Surgery. 183 (4): 471–9. doi:10.1016/s0002-9610(02)00823-1. PMID 11975938.
  24. ^ "Glutamine". WebMD. WebMD, LLC. Retrieved 2015-03-15.
  25. ^ Brioche T, Pagano AF, Py G, Chopard A (August 2016). "Muscle wasting and aging: Experimental models, fatty infiltrations, and prevention" (PDF). Molecular Aspects of Medicine. 50: 56–87. doi:10.1016/j.mam.2016.04.006. PMID 27106402. S2CID 29717535.
  26. ^ Holeček M (August 2017). "Beta-hydroxy-beta-methylbutyrate supplementation and skeletal muscle in healthy and muscle-wasting conditions". Journal of Cachexia, Sarcopenia and Muscle. 8 (4): 529–541. doi:10.1002/jcsm.12208. PMC 5566641. PMID 28493406.
  27. ^ a b c von Haehling S, Anker SD (September 2010). "Cachexia as a major underestimated and unmet medical need: facts and numbers". Journal of Cachexia, Sarcopenia and Muscle. 1 (1): 1–5. doi:10.1007/s13539-010-0002-6. PMC 3060651. PMID 21475699.
  28. ^ Barrett ML, Bailey MK, Owens PL. Non-maternal and Non-neonatal Inpatient Stays in the United States Involving Malnutrition, 2016. ONLINE. August 30, 2018. U.S. Agency for Healthcare Research and Quality. Available: https://www.hcup-us.ahrq.gov/reports/HCUPMalnutritionHospReport_083018.pdf.
  29. ^ Alhamarneh O, Agada F, Madden L, Stafford N, Greenman J (March 2011). "Serum IL10 and circulating CD4(+) CD25(high) regulatory T cell numbers as predictors of clinical outcome and survival in patients with head and neck squamous cell carcinoma". Head & Neck. 33 (3): 415–23. doi:10.1002/hed.21464. PMID 20645289. S2CID 20061488.
  30. ^ a b Argilés JM, Busquets S, López-Soriano FJ (September 2011). "Anti-inflammatory therapies in cancer cachexia". European Journal of Pharmacology. 668 Suppl 1: S81–6. doi:10.1016/j.ejphar.2011.07.007. PMID 21835173.
  31. ^ Ries A, Trottenberg P, Elsner F, Stiel S, Haugen D, Kaasa S, Radbruch L (June 2012). "A systematic review on the role of fish oil for the treatment of cachexia in advanced cancer: an EPCRC cachexia guidelines project" (PDF). Palliative Medicine. 26 (4): 294–304. doi:10.1177/0269216311418709. PMID 21865295. S2CID 2801425.
  32. ^ a b Suzuki H, Asakawa A, Amitani H, Nakamura N, Inui A (May 2013). "Cancer cachexia--pathophysiology and management". Journal of Gastroenterology. 48 (5): 574–94. doi:10.1007/s00535-013-0787-0. PMC 3698426. PMID 23512346.
  33. ^ "Program Information and News - New York State Medical Marijuana Program". www.health.ny.gov.
  34. ^ Rules Governing the Maine Medical Use of Marijuana Program - 10-144 CMR Chapter 122 - Section 3.1.3
  35. ^ . health.hawaii.gov. Archived from the original on 2016-05-22. Retrieved 2016-04-27.
  36. ^ Yavuzsen T, Davis MP, Walsh D, LeGrand S, Lagman R (November 2005). "Systematic review of the treatment of cancer-associated anorexia and weight loss". Journal of Clinical Oncology. 23 (33): 8500–11. doi:10.1200/JCO.2005.01.8010. PMID 16293879.

External links

cachexia, wasting, syndrome, redirects, here, process, which, debilitating, disease, causes, muscle, tissue, waste, away, wasting, complex, syndrome, associated, with, underlying, illness, causing, ongoing, muscle, loss, that, entirely, reversed, with, nutriti. Wasting syndrome redirects here For the process by which a debilitating disease causes muscle and fat tissue to waste away see wasting Cachexia k e ˈ k ɛ k s i e 1 is a complex syndrome associated with an underlying illness causing ongoing muscle loss that is not entirely reversed with nutritional supplementation A range of diseases can cause cachexia most commonly cancer congestive heart failure chronic obstructive pulmonary disease chronic kidney disease and AIDS Systemic inflammation from these conditions can cause detrimental changes to metabolism and body composition In contrast to weight loss from inadequate caloric intake cachexia causes mostly muscle loss instead of fat loss Diagnosis of cachexia can be difficult due to the lack of well established diagnostic criteria Cachexia can improve with treatment of the underlying illness but other treatment approaches have limited benefit Cachexia is associated with increased mortality and poor quality of life CachexiaOther namesWasting syndromeProcesses and mechanisms related to cancer associated cachexiaSpecialtyOncology Internal Medicine Physical Medicine and RehabilitationSymptomssudden weight loss altered eating signalsPrognosisvery poorFrequency1 Deaths1 5 to 2 million people a yearThe term is from Greek kakos kakos bad and ἕ3is hexis condition Contents 1 Causes 2 Mechanism 3 Diagnosis 3 1 Definition 4 Treatment 4 1 Exercise 4 2 Medications 4 3 Nutrition 4 4 Supplements 5 Epidemiology 6 History 7 Research 7 1 Multimodal therapy 8 See also 9 References 10 External linksCauses EditCachexia can be caused by diverse medical conditions but is most often associated with end stage cancer known as cancer cachexia About 50 of all cancer patients develop cachexia Those with upper gastrointestinal and pancreatic cancers have the highest frequency of developing a cachexic symptom Prevalence of cachexia rises in more advanced stages and is estimated to affect 80 of terminal cancer patients 2 Congestive heart failure AIDS chronic obstructive pulmonary disease and chronic kidney disease are other conditions that often cause cachexia 3 Cachexia can also be the result of advanced stages of cystic fibrosis multiple sclerosis motor neuron disease Parkinson s disease dementia tuberculosis multiple system atrophy mercury poisoning Crohn s disease trypanosomiasis rheumatoid arthritis and celiac disease as well as other systemic diseases 4 5 Mechanism EditThe exact mechanism in which these diseases cause cachexia is poorly understood and likely is multifactorial with multiple disease pathways involved Inflammatory cytokines appear to play a central role including tumor necrosis factor TNF which is also nicknamed cachexin or cachectin interferon gamma and interleukin 6 TNF has been shown to have a direct catabolic effect on skeletal muscle and adipose tissue through the ubiquitin proteasome pathway This mechanism involves the formation of reactive oxygen species leading to upregulation of the transcription factor NF kB NF kB is a known regulator of the genes that encode cytokines and cytokine receptors The increased production of cytokines induces proteolysis and breakdown of myofibrillar proteins 6 Systemic inflammation also causes reduced protein synthesis through inhibition of the Akt mTOR pathway 7 Although many different tissues and cell types may be responsible for the increase in circulating cytokines evidence indicates tumors themselves are an important source of factors that may promote cachexia in cancer Tumor derived molecules such as lipid mobilizing factor proteolysis inducing factor and mitochondrial uncoupling proteins may induce protein degradation and contribute to cachexia 8 Uncontrolled inflammation in cachexia can lead to an elevated resting metabolic rate further increasing the demands for protein and energy sources 7 There is also evidence of alteration in feeding control loops in cachexia High levels of leptin a hormone secreted by adipocytes block the release of neuropeptide Y which is the most potent feeding stimulatory peptide in the hypothalamic orexigenic network leading to decreased energy intake despite the high metabolic demand for nutrients 8 Diagnosis EditDiagnostic guidelines and criteria have only recently been proposed despite the prevalence of cachexia and varying criteria the primary features of cachexia include progressive depletion of muscle and fat mass reduced food intake abnormal metabolism of carbohydrate protein and fat reduced quality of life and increased physical impairment 9 Historically body weight changes were used as the primary metrics of cachexia including low body mass index and involuntary weight loss of more than 10 Using weight alone is limited by the presence of edema tumor mass and the high prevalence of obesity in the general population 10 Weight based criteria do not take into account changes in body composition especially loss of lean body mass In the attempt to include a broader evaluation of the burden of cachexia diagnostic criteria using assessments of laboratory metrics and symptoms in addition to weight have been proposed The criteria included weight loss of at least 5 in 12 months or low body mass index less than 22 kg m2 with at least three of the following features decreased muscle strength fatigue anorexia low fat free mass index or abnormal biochemistry increased inflammatory markers anemia low serum albumin 11 In cancer patients cachexia is diagnosed from unintended weight loss of more than 5 For cancer patients with a body mass index of less than 20 kg m2 cachexia is diagnosed after the unintended weight loss of more than 2 Additionally it can be diagnosed through sarcopenia or loss of skeletal muscle mass 12 Laboratory markers are used in evaluation of people with cachexia including albumin prealbumin C reactive protein or hemoglobin However laboratory metrics and cut off values are not standardized across different diagnostic criteria Acute phase reactants IL 6 IL 1b tumor necrosis factor a IL 8 interferon g are sometimes measured but correlate poorly with outcomes There are no biomarkers to identify people with cancer who may develop cachexia 9 10 In the effort to better classify cachexia severity several scoring systems have been proposed including the Cachexia Staging Score CSS and Cachexia Score CASCO The CSS takes into account weight loss subjective reporting of muscle function performance status appetite loss and laboratory changes to categorize patients into non cachexia pre cachexia cachexia and refractory cachexia The Cachexia SCOre CASCO is another validated score that includes evaluation of body weight loss and composition inflammation metabolic disturbances immunosuppression physical performance anorexia and quality of life 10 Evaluation of changes in body composition is limited by the difficulty in measuring muscle mass and health in a non invasive and cost effective way Imaging with quantification of muscle mass has been investigated including bioelectrical impedance analysis computed tomography dual energy X ray absorptiometry DEXA and magnetic resonance imaging but are not widely used 10 Definition Edit Identification treatment and research of cachexia have historically been limited by the lack of a widely accepted definition of cachexia In 2011 an international consensus group adopted a definition of cachexia as a multifactorial syndrome defined by an ongoing loss of skeletal muscle mass with or without loss of fat mass that can be partially but not entirely reversed by conventional nutritional support 13 Cachexia differs from weight loss due to malnutrition from malabsorption anorexia nervosa or anorexia due to major depressive disorder Weight loss from inadequate caloric intake generally causes fat loss before muscle loss whereas cachexia causes predominantly muscle wasting Cachexia is also distinct from sarcopenia or age related muscle loss although they often co exist 11 Treatment EditThe management of cachexia depends on the underlying cause the general prognosis and the needs of the person affected 14 The most effective approach to cachexia is treating the underlying disease process An example is the reduction in cachexia from AIDS by highly active antiretroviral therapy 15 However this is often not possible or maybe inadequate to reverse the cachexia syndrome in other diseases Approaches to mitigate muscle loss include exercise nutritional therapies and medications Exercise Edit Therapy that includes regular physical exercise can be recommended for the treatment of cachexia due to the positive effects of exercise on skeletal muscle but current evidence remains uncertain as to its effectiveness acceptability and safety for cancer patients 16 Individuals with cachexia generally report low levels of physical activity and few engage in an exercise routine owing to low motivation to exercise and a belief that exercising may worsen their symptoms or cause harm 17 Medications Edit Appetite stimulant medications are used to treat cachexia to increase food intake but are not effective in stopping muscle wasting and may have detrimental side effects Appetite stimulants include glucocorticoids cannabinoids or progestins such as megestrol acetate 9 18 19 Anti emetics such as 5 HT3 antagonists are also commonly used in cancer cachexia if nausea is a prominent symptom 6 Anabolic androgenic steroids like oxandrolone may be beneficial in cachexia but their use is recommended for a maximum of two weeks since a longer duration of treatment increases side effects 19 20 Whilst preliminary studies have suggested thalidomide may be useful a Cochrane review found no evidence to make an informed decision about the use of this drug in cancer patients with cachexia 21 Nutrition Edit The increased metabolic rate and appetite suppression common in cachexia can compound muscle loss 7 Studies using a calorie dense protein supplementation have suggested at least weight stabilization can be achieved although improvements in lean body mass have not been observed in these studies 6 Supplements Edit Administration of exogenous amino acids have been investigated to serve as a protein sparing metabolic fuel by providing substrates for both muscle metabolism and gluconeogenesis The branched chain amino acids leucine and valine may have potential in inhibiting overexpression of protein breakdown pathways 22 The amino acid glutamine has been used as a component of oral supplementation to reverse cachexia in people with advanced cancer 23 or HIV AIDS 24 b hydroxy b methylbutyrate HMB is a metabolite of leucine that acts as a signaling molecule to stimulate protein synthesis Studies showed positive results for chronic pulmonary disease hip fracture and in AIDS related and cancer related cachexia However many of these clinical studies used HMB as a component of combination treatment with glutamine arginine leucine higher dietary protein and or vitamins which limits the assessment of the efficacy of HMB alone 25 26 Epidemiology EditAccurate epidemiological data on the prevalence of cachexia is lacking due to changing diagnostic criteria and under identification of people with the disorder 27 It is estimated that cachexia from any disease is estimated to affect more than 5 million people in the United States 9 The prevalence of cachexia is growing and estimated at 1 of the population The prevalence is lower in Asia but due to the larger population represents a similar burden Cachexia is also a significant problem in South America and Africa 27 The most frequent causes of cachexia in the United States by population prevalence are 1 chronic obstructive pulmonary disease COPD 2 heart failure 3 cancer cachexia 4 chronic kidney disease The prevalence of cachexia ranges from 15 to 60 among people with cancer increasing to an estimated 80 in terminal cancer 2 This wide range is attributed to differences in cachexia definition variability in cancer populations and timing of diagnosis 9 Although the prevalence of cachexia among people with COPD or heart failure is lower estimated 5 to 20 the large number of people with these conditions dramatically increases the total cachexia burden 5 27 Cachexia contributes to significant loss of function and healthcare utilization Estimates using the National Inpatient Sample in the United States suggest that cachexia accounted for 177 640 hospital stays in 2016 28 Cachexia is considered the immediate cause of death of many people with cancer estimated between 22 and 40 29 History EditThe word cachexia is derived from the Greek words Kakos bad and hexis condition English ophthalmologist John Zachariah Laurence was the first to use the phrase cancerous cachexia doing so in 1858 He applied the phrase to the chronic wasting associated with malignancy It was not until 2011 that the term cancer associated cachexia was given a formal definition with a publication by Kenneth Fearon Fearon defined it as a multifactorial syndrome characterized by ongoing loss of skeletal muscle with or without loss of fat mass that cannot be fully reversed by conventional nutritional support and leads to progressive functional impairment 12 Research EditSeveral medications are under investigation or have been previously trialed for use in cachexia but are currently not in widespread clinical use Thalidomide 30 Cytokine antagonists 19 Cannabinoids 19 Omega 3 fatty acids including eicosapentaenoic acid EPA 19 31 Non steroidal anti inflammatory drugs 19 Prokinetics 19 Ghrelin and ghrelin receptor agonist 3 Anabolic catabolic transforming agents such as MT 102 3 Selective androgen receptor modulators 3 Cyproheptadine 32 Hydrazine 32 Medical marijuana has been allowed for the treatment of cachexia in some US states such as Illinois Maryland Delaware Nevada Michigan Washington Oregon California Colorado New Mexico Arizona Vermont New Jersey Rhode Island Maine and New York 33 34 Hawaii 35 and Connecticut 18 36 Multimodal therapy Edit Despite the extensive investigation into single therapeutic targets for cachexia the most effective treatments use multi targeted therapies In Europe a combination of non drug approaches including physical training nutritional counseling and psychotherapeutic intervention are used in belief this approach may be more effective than monotherapy 19 Administration of anti inflammatory drugs showed efficacy and safety in the treatment of people with advanced cancer cachexia 30 See also EditSarcopenia Muscle atrophy Marasmus Cancer Progressive disease Journal of Cachexia Sarcopenia and MuscleReferences Edit Cachexia Definition of Cachexia by Lexico Lexico Dictionaries English Archived from the original on November 8 2019 a b Fearon KC Moses AG September 2002 Cancer cachexia International Journal of Cardiology 85 1 73 81 doi 10 1016 S0167 5273 02 00235 8 PMID 12163211 a b c d Ebner N Springer J Kalantar Zadeh K Lainscak M Doehner W Anker SD von Haehling S July 2013 Mechanism and novel therapeutic approaches to wasting in chronic disease Maturitas 75 3 199 206 doi 10 1016 j maturitas 2013 03 014 PMID 23664695 S2CID 42148927 Meresse B Ripoche J Heyman M Cerf Bensussan N January 2009 Celiac disease from oral tolerance to intestinal inflammation autoimmunity and lymphomagenesis Mucosal Immunology 2 1 8 23 doi 10 1038 mi 2008 75 PMID 19079330 S2CID 24980464 a b Morley JE Thomas DR Wilson MM April 2006 Cachexia pathophysiology and clinical relevance The American Journal of Clinical Nutrition 83 4 735 43 doi 10 1093 ajcn 83 4 735 PMID 16600922 a b c Kumar NB Kazi A Smith T Crocker T Yu D Reich RR Reddy K Hastings S Exterman M Balducci L Dalton K Bepler G December 2010 Cancer cachexia traditional therapies and novel molecular mechanism based approaches to treatment Current Treatment Options in Oncology 11 3 4 107 17 doi 10 1007 s11864 010 0127 z PMC 3016925 PMID 21128029 a b c Argiles JM Campos N Lopez Pedrosa JM Rueda R Rodriguez Manas L September 2016 Skeletal Muscle Regulates Metabolism via Interorgan Crosstalk Roles in Health and Disease Journal of the American Medical Directors Association 17 9 789 96 doi 10 1016 j jamda 2016 04 019 PMID 27324808 a b Martignoni ME Kunze P Friess H November 2003 Cancer cachexia Molecular Cancer 2 1 36 doi 10 1186 1476 4598 2 36 PMC 280692 PMID 14613583 a b c d e Peterson SJ Mozer M February 2017 Differentiating Sarcopenia and Cachexia Among Patients With Cancer Nutrition in Clinical Practice 32 1 30 39 doi 10 1177 0884533616680354 PMID 28124947 S2CID 206555460 a b c d Dev R January 2019 Measuring cachexia diagnostic criteria Annals of Palliative Medicine 8 1 24 32 doi 10 21037 apm 2018 08 07 PMID 30525765 a b Evans WJ Morley JE Argiles J Bales C Baracos V Guttridge D et al December 2008 Cachexia a new definition Clinical Nutrition 27 6 793 9 doi 10 1016 j clnu 2008 06 013 PMID 18718696 S2CID 206821612 a b Biswas Anup K Acharyya Swarnali 2020 Cancer Associated Cachexia A Systemic Consequence of Cancer Progression Annual Review of Cancer Biology 4 391 411 doi 10 1146 annurev cancerbio 030419 033642 Fearon K Strasser F Anker SD Bosaeus I Bruera E Fainsinger RL et al May 2011 Definition and classification of cancer cachexia an international consensus The Lancet Oncology 12 5 489 95 doi 10 1016 s1470 2045 10 70218 7 PMID 21296615 Care Management Guidelines Fatigue Anorexia and Cachexia PDF Archived from the original PDF on 2014 05 14 Retrieved 23 February 2014 AIDS Wasting Syndrome WebMD Grande AJ Silva V Sawaris Neto L Teixeira Basmage JP Peccin MS Maddocks M March 2021 Exercise for cancer cachexia in adults The Cochrane Database of Systematic Reviews 2021 3 CD010804 doi 10 1002 14651858 CD010804 pub3 PMC 8094916 PMID 33735441 Wasley D Gale N Roberts S Backx K Nelson A van Deursen R Byrne A February 2018 Patients with established cancer cachexia lack the motivation and self efficacy to undertake regular structured exercise PDF Psycho Oncology 27 2 458 464 doi 10 1002 pon 4512 hdl 10369 8759 PMID 28758698 S2CID 206378678 a b Gagnon B Bruera E May 1998 A review of the drug treatment of cachexia associated with cancer Drugs 55 5 675 88 doi 10 2165 00003495 199855050 00005 PMID 9585863 S2CID 22180434 a b c d e f g h New European Guidelines Clinical Practice Guidelines on Cancer Cachexia in Advanced Cancer Patients European Palliative Care Research Collaborative Archived from the original on 2 May 2014 Retrieved 23 February 2014 Giovanni Mantovani 6 October 2007 Cachexia and Wasting A Modern Approach Springer Science amp Business Media pp 673 ISBN 978 88 470 0552 5 Reid J Mills M Cantwell M Cardwell CR Murray LJ Donnelly M April 2012 Thalidomide for managing cancer cachexia The Cochrane Database of Systematic Reviews 2021 4 CD008664 doi 10 1002 14651858 cd008664 pub2 PMC 6353113 PMID 22513961 Eley HL Russell ST Tisdale MJ October 2007 Effect of branched chain amino acids on muscle atrophy in cancer cachexia The Biochemical Journal 407 1 113 20 doi 10 1042 BJ20070651 PMC 2267397 PMID 17623010 May PE Barber A D Olimpio JT Hourihane A Abumrad NN April 2002 Reversal of cancer related wasting using oral supplementation with a combination of beta hydroxy beta methylbutyrate arginine and glutamine American Journal of Surgery 183 4 471 9 doi 10 1016 s0002 9610 02 00823 1 PMID 11975938 Glutamine WebMD WebMD LLC Retrieved 2015 03 15 Brioche T Pagano AF Py G Chopard A August 2016 Muscle wasting and aging Experimental models fatty infiltrations and prevention PDF Molecular Aspects of Medicine 50 56 87 doi 10 1016 j mam 2016 04 006 PMID 27106402 S2CID 29717535 Holecek M August 2017 Beta hydroxy beta methylbutyrate supplementation and skeletal muscle in healthy and muscle wasting conditions Journal of Cachexia Sarcopenia and Muscle 8 4 529 541 doi 10 1002 jcsm 12208 PMC 5566641 PMID 28493406 a b c von Haehling S Anker SD September 2010 Cachexia as a major underestimated and unmet medical need facts and numbers Journal of Cachexia Sarcopenia and Muscle 1 1 1 5 doi 10 1007 s13539 010 0002 6 PMC 3060651 PMID 21475699 Barrett ML Bailey MK Owens PL Non maternal and Non neonatal Inpatient Stays in the United States Involving Malnutrition 2016 ONLINE August 30 2018 U S Agency for Healthcare Research and Quality Available https www hcup us ahrq gov reports HCUPMalnutritionHospReport 083018 pdf Alhamarneh O Agada F Madden L Stafford N Greenman J March 2011 Serum IL10 and circulating CD4 CD25 high regulatory T cell numbers as predictors of clinical outcome and survival in patients with head and neck squamous cell carcinoma Head amp Neck 33 3 415 23 doi 10 1002 hed 21464 PMID 20645289 S2CID 20061488 a b Argiles JM Busquets S Lopez Soriano FJ September 2011 Anti inflammatory therapies in cancer cachexia European Journal of Pharmacology 668 Suppl 1 S81 6 doi 10 1016 j ejphar 2011 07 007 PMID 21835173 Ries A Trottenberg P Elsner F Stiel S Haugen D Kaasa S Radbruch L June 2012 A systematic review on the role of fish oil for the treatment of cachexia in advanced cancer an EPCRC cachexia guidelines project PDF Palliative Medicine 26 4 294 304 doi 10 1177 0269216311418709 PMID 21865295 S2CID 2801425 a b Suzuki H Asakawa A Amitani H Nakamura N Inui A May 2013 Cancer cachexia pathophysiology and management Journal of Gastroenterology 48 5 574 94 doi 10 1007 s00535 013 0787 0 PMC 3698426 PMID 23512346 Program Information and News New York State Medical Marijuana Program www health ny gov Rules Governing the Maine Medical Use of Marijuana Program 10 144 CMR Chapter 122 Section 3 1 3 Medical Marijuana Registry Program Eligible Debilitating Medical Conditions health hawaii gov Archived from the original on 2016 05 22 Retrieved 2016 04 27 Yavuzsen T Davis MP Walsh D LeGrand S Lagman R November 2005 Systematic review of the treatment of cancer associated anorexia and weight loss Journal of Clinical Oncology 23 33 8500 11 doi 10 1200 JCO 2005 01 8010 PMID 16293879 External links Edit Look up cachexia in Wiktionary the free dictionary Retrieved from https en wikipedia org w index php title Cachexia amp oldid 1144487923, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.