fbpx
Wikipedia

Nuclear power

Nuclear power is the use of nuclear reactions to produce electricity. Nuclear power can be obtained from nuclear fission, nuclear decay and nuclear fusion reactions. Presently, the vast majority of electricity from nuclear power is produced by nuclear fission of uranium and plutonium in nuclear power plants. Nuclear decay processes are used in niche applications such as radioisotope thermoelectric generators in some space probes such as Voyager 2. Generating electricity from fusion power remains the focus of international research.

Growth of worldwide nuclear power generation

Most nuclear power plants use thermal reactors with enriched uranium in a once-through fuel cycle. Fuel is removed when the percentage of neutron absorbing atoms becomes so large that a chain reaction can no longer be sustained, typically three years. It is then cooled for several years in on-site spent fuel pools before being transferred to long term storage. The spent fuel, though low in volume, is high-level radioactive waste. While its radioactivity decreases exponentially it must be isolated from the biosphere for hundreds of thousands of years, though newer technologies (like fast reactors) have the potential to reduce this significantly. Because the spent fuel is still mostly fissionable material, some countries (e.g. France and Russia) reprocess their spent fuel by extracting fissile and fertile elements for fabrication in new fuel, although this process is more expensive than producing new fuel from mined uranium. All reactors breed some plutonium-239, which is found in the spent fuel, and because Pu-239 is the preferred material for nuclear weapons, reprocessing is seen as a weapon proliferation risk.

The first nuclear power plant was built in the 1950s. The global installed nuclear capacity grew to 100 GW in the late 1970s, and then expanded rapidly during the 1980s, reaching 300 GW by 1990. The 1979 Three Mile Island accident in the United States and the 1986 Chernobyl disaster in the Soviet Union resulted in increased regulation and public opposition to nuclear plants. These factors, along with high cost of construction, resulted in the global installed capacity only increasing to 390 GW by 2022. These plants supplied 2,586 terawatt hours (TWh) of electricity in 2019, equivalent to about 10% of global electricity generation, and were the second-largest low-carbon power source after hydroelectricity. As of September 2022, there are 437 civilian fission reactors in the world, with overall capacity of 393 GW,[1] 57 under construction and 102 planned, with a combined capacity of 62 GW and 96 GW, respectively. The United States has the largest fleet of nuclear reactors, generating over 800 TWh of zero-emissions electricity per year with an average capacity factor of 92%. Average global capacity factor is 89%.[1] Most new reactors under construction are generation III reactors in Asia.

Nuclear power generation causes one of the lowest levels of fatalities per unit of energy generated compared to other energy sources. Coal, petroleum, natural gas and hydroelectricity each have caused more fatalities per unit of energy due to air pollution and accidents. Nuclear power plants emit no greenhouse gases. One of the dangers of nuclear power is the potential for accidents like the Fukushima nuclear disaster in Japan in 2011.

There is a debate about nuclear power. Proponents contend that nuclear power is a safe, sustainable energy source that reduces carbon emissions. The anti-nuclear movement contends that nuclear power poses many threats to people and the environment and is too expensive and slow to deploy when compared to alternative sustainable energy sources.

History

Origins

 
The first light bulbs ever lit by electricity generated by nuclear power at EBR-1 at Argonne National Laboratory-West, December 20, 1951.[2]

The discovery of nuclear fission occurred in 1938 following over four decades of work on the science of radioactivity and the elaboration of new nuclear physics that described the components of atoms. Soon after the discovery of the fission process, it was realized that a fissioning nucleus can induce further nucleus fissions, thus inducing a self-sustaining chain reaction.[3] Once this was experimentally confirmed in 1939, scientists in many countries petitioned their governments for support of nuclear fission research, just on the cusp of World War II, for the development of a nuclear weapon.[4]

In the United States, these research efforts led to the creation of the first man-made nuclear reactor, the Chicago Pile-1, which achieved criticality on December 2, 1942. The reactor's development was part of the Manhattan Project, the Allied effort to create atomic bombs during World War II. It led to the building of larger single-purpose production reactors for the production of weapons-grade plutonium for use in the first nuclear weapons. The United States tested the first nuclear weapon in July 1945, the Trinity test, with the atomic bombings of Hiroshima and Nagasaki taking place one month later.

 
The launching ceremony of the USS Nautilus January 1954. In 1958 it would become the first vessel to reach the North Pole.[5]
 
The Calder Hall nuclear power station in the United Kingdom, the world's first commercial nuclear power station.

Despite the military nature of the first nuclear devices, the 1940s and 1950s were characterized by strong optimism for the potential of nuclear power to provide cheap and endless energy.[6] Electricity was generated for the first time by a nuclear reactor on December 20, 1951, at the EBR-I experimental station near Arco, Idaho, which initially produced about 100 kW.[7][8] In 1953, American President Dwight Eisenhower gave his "Atoms for Peace" speech at the United Nations, emphasizing the need to develop "peaceful" uses of nuclear power quickly. This was followed by the Atomic Energy Act of 1954 which allowed rapid declassification of U.S. reactor technology and encouraged development by the private sector.

First power generation

The first organization to develop practical nuclear power was the U.S. Navy, with the S1W reactor for the purpose of propelling submarines and aircraft carriers. The first nuclear-powered submarine, USS Nautilus, was put to sea in January 1954.[9][10] The S1W reactor was a pressurized water reactor. This design was chosen because it was simpler, more compact, and easier to operate compared to alternative designs, thus more suitable to be used in submarines. This decision would result in the PWR being the reactor of choice also for power generation, thus having a lasting impact on the civilian electricity market in the years to come.[11]

On June 27, 1954, the Obninsk Nuclear Power Plant in the USSR became the world's first nuclear power plant to generate electricity for a power grid, producing around 5 megawatts of electric power.[12] The world's first commercial nuclear power station, Calder Hall at Windscale, England was connected to the national power grid on 27 August 1956. In common with a number of other generation I reactors, the plant had the dual purpose of producing electricity and plutonium-239, the latter for the nascent nuclear weapons program in Britain.[13]

Expansion and first opposition

The total global installed nuclear capacity initially rose relatively quickly, rising from less than 1 gigawatt (GW) in 1960 to 100 GW in the late 1970s.[9] During the 1970s and 1980s rising economic costs (related to extended construction times largely due to regulatory changes and pressure-group litigation)[14] and falling fossil fuel prices made nuclear power plants then under construction less attractive. In the 1980s in the U.S. and 1990s in Europe, the flat electric grid growth and electricity liberalization also made the addition of large new baseload energy generators economically unattractive.

The 1973 oil crisis had a significant effect on countries, such as France and Japan, which had relied more heavily on oil for electric generation to invest in nuclear power.[15] France would construct 25 nuclear power plants over the next 15 years,[16][17] and as of 2019, 71% of French electricity was generated by nuclear power, the highest percentage by any nation in the world.[18]

Some local opposition to nuclear power emerged in the United States in the early 1960s.[19] In the late 1960s some members of the scientific community began to express pointed concerns.[20] These anti-nuclear concerns related to nuclear accidents, nuclear proliferation, nuclear terrorism and radioactive waste disposal.[21] In the early 1970s, there were large protests about a proposed nuclear power plant in Wyhl, Germany. The project was cancelled in 1975. The anti-nuclear success at Wyhl inspired opposition to nuclear power in other parts of Europe and North America.[22][23]

By the mid-1970s anti-nuclear activism gained a wider appeal and influence, and nuclear power began to become an issue of major public protest.[24][25] In some countries, the nuclear power conflict "reached an intensity unprecedented in the history of technology controversies".[26][27] The increased public hostility to nuclear power led to a longer license procurement process, regulations and increased requirements for safety equipment, which made new construction much more expensive.[28][29] In the United States, over 120 LWR reactor proposals were ultimately cancelled[30] and the construction of new reactors ground to a halt.[31] The 1979 accident at Three Mile Island with no fatalities, played a major part in the reduction in the number of new plant constructions in many countries.[20]

Chernobyl and renaissance

 
The town of Pripyat abandoned since 1986, with the Chernobyl plant and the Chernobyl New Safe Confinement arch in the distance
 
Olkiluoto 3 under construction in 2009. It was the first EPR, a modernized PWR design, to start construction.

During the 1980s one new nuclear reactor started up every 17 days on average.[32] By the end of the decade, global installed nuclear capacity reached 300 GW. Since the late 1980s, new capacity additions slowed down significantly, with the installed nuclear capacity reaching 366 GW in 2005.

The 1986 Chernobyl disaster in the USSR, involving an RBMK reactor, altered the development of nuclear power and led to a greater focus on meeting international safety and regulatory standards.[33] It is considered the worst nuclear disaster in history both in total casualties, with 56 direct deaths, and financially, with the cleanup and the cost estimated at 18 billion Rbls (US$68 billion in 2019, adjusted for inflation).[34][35] The international organization to promote safety awareness and the professional development of operators in nuclear facilities, the World Association of Nuclear Operators (WANO), was created as a direct outcome of the 1986 Chernobyl accident. The Chernobyl disaster played a major part in the reduction in the number of new plant constructions in the following years.[20] Influenced by these events, Italy voted against nuclear power in a 1987 referendum, becoming the first country to completely phase out nuclear power in 1990.

In the early 2000s, nuclear energy was expecting a nuclear renaissance, an increase in the construction of new reactors, due to concerns about carbon dioxide emissions.[36] During this period, newer generation III reactors, such as the EPR began construction.

Fukushima

Nuclear power generation (TWh) and operational nuclear reactors since 1997[37]

Prospects of a nuclear renaissance were delayed by another nuclear accident.[36][38] The 2011 Fukushima Daiichi nuclear accident was caused by a large tsunami triggered by the Tōhoku earthquake, one of the largest earthquakes ever recorded. The Fukushima Daiichi Nuclear Power Plant suffered three core meltdowns due to failure of the emergency cooling system for lack of electricity supply. This resulted in the most serious nuclear accident since the Chernobyl disaster. The accident prompted a re-examination of nuclear safety and nuclear energy policy in many countries.[39] Germany approved plans to close all its reactors by 2022, and many other countries reviewed their nuclear power programs.[40][41][42][43] Following the disaster, Japan shut down all of its nuclear power reactors, some of them permanently, and in 2015 began a gradual process to restart the remaining 40 reactors, following safety checks and based on revised criteria for operations and public approval.[44]

In 2022, the Japanese government, under the leadership of Prime Minister Fumio Kishida, has declared that 10 more nuclear power plants be reopened since the 2011 disaster.[45] Kishida is also pushing for research and construction of new safer nuclear plants to safeguard Japanese consumers from the fluctuating fossil fuel market and reduce Japan's greenhouse gas emissions.[46] Prime Minister Kishida intends to have Japan become a significant exporter of nuclear energy and technology to developing countries around the world..[46]

Current prospects

By 2015, the IAEA's outlook for nuclear energy had become more promising, recognizing the importance of low-carbon generation for mitigating climate change.[47] As of 2015, the global trend was for new nuclear power stations coming online to be balanced by the number of old plants being retired.[48] In 2016, the U.S. Energy Information Administration projected for its "base case" that world nuclear power generation would increase from 2,344 terawatt hours (TWh) in 2012 to 4,500 TWh in 2040. Most of the predicted increase was expected to be in Asia.[49] As of 2018, there are over 150 nuclear reactors planned including 50 under construction.[50] In January 2019, China had 45 reactors in operation, 13 under construction, and plans to build 43 more, which would make it the world's largest generator of nuclear electricity.[51] As of 2021, 17 reactors were reported to be under construction. China built significantly fewer reactors than originally planned, its share of electricity from nuclear power was 5% in 2019[52] and observers have cautioned that, along with the risks, the changing economics of energy generation may cause new nuclear energy plants to "no longer make sense in a world that is leaning toward cheaper, more reliable renewable energy".[53][54]

In October 2021, the Japanese cabinet approved the new Plan for Electricity Generation to 2030 prepared by the Agency for Natural Resources and Energy (ANRE) and an advisory committee, following public consultation. The nuclear target for 2030 requires the restart of another ten reactors. Prime Minister Fumio Kishida in July 2022 announced that the country should consider building advanced reactors and extending operating licences beyond 60 years.[55]

As of 2022, with world oil and gas prices on the rise, while Germany is restarting its coal plants to deal with loss of Russian gas that it needs to supplement its Energiwende,[56] many other countries have announced ambitious plans to reinvigorate ageing nuclear generating capacity with new investments. French President Emmanuel Macron announced his intention to build six new reactors in coming decades, placing nuclear at the heart of France's drive for carbon neutrality by 2050.[57]

Power plants

An animation of a pressurized water reactor in operation
Number of electricity-generating civilian reactors by type as of 2014[58]
  PWR   BWR   GCR   PHWR   LWGR   FBR

Nuclear power plants are thermal power stations that generate electricity by harnessing the thermal energy released from nuclear fission. A fission nuclear power plant is generally composed of: a nuclear reactor, in which the nuclear reactions generating heat take place; a cooling system, which removes the heat from inside the reactor; a steam turbine, which transforms the heat into mechanical energy; an electric generator, which transforms the mechanical energy into electrical energy.[59]

When a neutron hits the nucleus of a uranium-235 or plutonium atom, it can split the nucleus into two smaller nuclei, which is a nuclear fission reaction. The reaction releases energy and neutrons. The released neutrons can hit other uranium or plutonium nuclei, causing new fission reactions, which release more energy and more neutrons. This is called a chain reaction. In most commercial reactors, the reaction rate is contained by control rods that absorb excess neutrons. The controllability of nuclear reactors depends on the fact that a small fraction of neutrons resulting from fission are delayed. The time delay between the fission and the release of the neutrons slows down changes in reaction rates and gives time for moving the control rods to adjust the reaction rate.[59][60]

Fuel cycle

 
The nuclear fuel cycle begins when uranium is mined, enriched, and manufactured into nuclear fuel (1), which is delivered to a nuclear power plant. After use, the spent fuel is delivered to a reprocessing plant (2) or to a final repository (3). In nuclear reprocessing 95% of spent fuel can potentially be recycled to be returned to use in a power plant (4).

The life cycle of nuclear fuel starts with uranium mining. The uranium ore is then converted into a compact ore concentrate form, known as yellowcake (U3O8), to facilitate transport.[61] Fission reactors generally need uranium-235, a fissile isotope of uranium. The concentration of uranium-235 in natural uranium is very low (about 0.7%). Some reactors can use this natural uranium as fuel, depending on their neutron economy. These reactors generally have graphite or heavy water moderators. For light water reactors, the most common type of reactor, this concentration is too low, and it must be increased by a process called uranium enrichment.[61] In civilian light water reactors, uranium is typically enriched to 3.5–5% uranium-235.[62] The uranium is then generally converted into uranium oxide (UO2), a ceramic, that is then compressively sintered into fuel pellets, a stack of which forms fuel rods of the proper composition and geometry for the particular reactor.[62]

After some time in the reactor, the fuel will have reduced fissile material and increased fission products, until its use becomes impractical.[62] At this point, the spent fuel will be moved to a spent fuel pool which provides cooling for the thermal heat and shielding for ionizing radiation. After several months or years, the spent fuel is radioactively and thermally cool enough to be moved to dry storage casks or reprocessed.[62]

Uranium resources

 
Proportions of the isotopes uranium-238 (blue) and uranium-235 (red) found in natural uranium and in enriched uranium for different applications. Light water reactors use 3–5% enriched uranium, while CANDU reactors work with natural uranium.

Uranium is a fairly common element in the Earth's crust: it is approximately as common as tin or germanium, and is about 40 times more common than silver.[63] Uranium is present in trace concentrations in most rocks, dirt, and ocean water, but is generally economically extracted only where it is present in high concentrations. Uranium mining can be underground, open-pit, or in-situ leach mining. An increasing number of the highest output mines are remote underground operations, such as McArthur River uranium mine, in Canada, which by itself accounts for 13% of global production. As of 2011 the world's known resources of uranium, economically recoverable at the arbitrary price ceiling of US$130/kg, were enough to last for between 70 and 100 years.[64][65][66] In 2007, the OECD estimated 670 years of economically recoverable uranium in total conventional resources and phosphate ores assuming the then-current use rate.[67]

Light water reactors make relatively inefficient use of nuclear fuel, mostly using only the very rare uranium-235 isotope.[68] Nuclear reprocessing can make this waste reusable, and newer reactors also achieve a more efficient use of the available resources than older ones.[68] With a pure fast reactor fuel cycle with a burn up of all the uranium and actinides (which presently make up the most hazardous substances in nuclear waste), there is an estimated 160,000 years worth of uranium in total conventional resources and phosphate ore at the price of 60–100 US$/kg.[69] However, reprocessing is expensive, possibly dangerous and can be used to manufacture nuclear weapons.[70][71][72][73][74] One analysis found that for uranium prices could increase by two orders of magnitudes between 2035 and 2100 and that there could be a shortage near the end of the century.[75] A 2017 study by researchers from MIT and WHOI found that "at the current consumption rate, global conventional reserves of terrestrial uranium (approximately 7.6 million tonnes) could be depleted in a little over a century".[76] Limited uranium-235 supply may inhibit substantial expansion with the current nuclear technology.[77] While various ways to reduce dependence on such resources are being explored,[78][79][80] new nuclear technologies are considered to not be available in time for climate change mitigation purposes or competition with alternatives of renewables in addition to being more expensive and require costly research and development.[77][81][82] A study found it to be uncertain whether identified resources will be developed quickly enough to provide uninterrupted fuel supply to expanded nuclear facilities[83] and various forms of mining may be challenged by ecological barriers, costs, and land requirements.[84][85] Researchers also report considerable import dependence of nuclear energy.[86][87][88][89]

Unconventional uranium resources also exist. Uranium is naturally present in seawater at a concentration of about 3 micrograms per liter,[90][91][92] with 4.4 billion tons of uranium considered present in seawater at any time.[93] In 2014 it was suggested that it would be economically competitive to produce nuclear fuel from seawater if the process was implemented at large scale.[94] Like fossil fuels, over geological timescales, uranium extracted on an industrial scale from seawater would be replenished by both river erosion of rocks and the natural process of uranium dissolved from the surface area of the ocean floor, both of which maintain the solubility equilibria of seawater concentration at a stable level.[93] Some commentators have argued that this strengthens the case for nuclear power to be considered a renewable energy.[95]

Waste

 
Typical composition of uranium dioxide fuel before and after approximately three years in the once-through nuclear fuel cycle of a LWR[96]

The normal operation of nuclear power plants and facilities produce radioactive waste, or nuclear waste. This type of waste is also produced during plant decommissioning. There are two broad categories of nuclear waste: low-level waste and high-level waste.[97] The first has low radioactivity and includes contaminated items such as clothing, which poses limited threat. High-level waste is mainly the spent fuel from nuclear reactors, which is very radioactive and must be cooled and then safely disposed of or reprocessed.[97]

High-level waste

 
Activity of spent UOx fuel in comparison to the activity of natural uranium ore over time[98][96]
 
Dry cask storage vessels storing spent nuclear fuel assemblies

The most important waste stream from nuclear power reactors is spent nuclear fuel, which is considered high-level waste. For LWRs, spent fuel is typically composed of 95% uranium, 4% fission products, and about 1% transuranic actinides (mostly plutonium, neptunium and americium).[99] The fission products are responsible for the bulk of the short-term radioactivity, whereas the plutonium and other transuranics are responsible for the bulk of the long-term radioactivity.[100]

High-level waste (HLW) must be stored isolated from the biosphere with sufficient shielding so as to limit radiation exposure. After being removed from the reactors, used fuel bundles are stored for six to ten years in spent fuel pools, which provide cooling and shielding against radiation. After that, the fuel is cool enough that it can be safely transferred to dry cask storage.[101] The radioactivity decreases exponentially with time, such that it will have decreased by 99.5% after 100 years.[102] The more intensely radioactive short-lived fission products (SLFPs) decay into stable elements in approximately 300 years, and after about 100,000 years, the spent fuel becomes less radioactive than natural uranium ore.[96][103]

Commonly suggested methods to isolate LLFP waste from the biosphere include separation and transmutation,[96] synroc treatments, or deep geological storage.[104][105][106][107]

Thermal-neutron reactors, which presently constitute the majority of the world fleet, cannot burn up the reactor grade plutonium that is generated during the reactor operation. This limits the life of nuclear fuel to a few years. In some countries, such as the United States, spent fuel is classified in its entirety as a nuclear waste.[108] In other countries, such as France, it is largely reprocessed to produce a partially recycled fuel, known as mixed oxide fuel or MOX. For spent fuel that does not undergo reprocessing, the most concerning isotopes are the medium-lived transuranic elements, which are led by reactor-grade plutonium (half-life 24,000 years).[109] Some proposed reactor designs, such as the integral fast reactor and molten salt reactors, can use as fuel the plutonium and other actinides in spent fuel from light water reactors, thanks to their fast fission spectrum. This offers a potentially more attractive alternative to deep geological disposal.[110][111][112]

The thorium fuel cycle results in similar fission products, though creates a much smaller proportion of transuranic elements from neutron capture events within a reactor. Spent thorium fuel, although more difficult to handle than spent uranium fuel, may present somewhat lower proliferation risks.[113]

Low-level waste

The nuclear industry also produces a large volume of low-level waste, with low radioactivity, in the form of contaminated items like clothing, hand tools, water purifier resins, and (upon decommissioning) the materials of which the reactor itself is built. Low-level waste can be stored on-site until radiation levels are low enough to be disposed of as ordinary waste, or it can be sent to a low-level waste disposal site.[114]

Waste relative to other types

In countries with nuclear power, radioactive wastes account for less than 1% of total industrial toxic wastes, much of which remains hazardous for long periods.[68] Overall, nuclear power produces far less waste material by volume than fossil-fuel based power plants.[115] Coal-burning plants, in particular, produce large amounts of toxic and mildly radioactive ash resulting from the concentration of naturally occurring radioactive materials in coal.[116] A 2008 report from Oak Ridge National Laboratory concluded that coal power actually results in more radioactivity being released into the environment than nuclear power operation, and that the population effective dose equivalent from radiation from coal plants is 100 times that from the operation of nuclear plants.[117] Although coal ash is much less radioactive than spent nuclear fuel by weight, coal ash is produced in much higher quantities per unit of energy generated. It is also released directly into the environment as fly ash, whereas nuclear plants use shielding to protect the environment from radioactive materials.[118]

Nuclear waste volume is small compared to the energy produced. For example, at Yankee Rowe Nuclear Power Station, which generated 44 billion kilowatt hours of electricity when in service, its complete spent fuel inventory is contained within sixteen casks.[119] It is estimated that to produce a lifetime supply of energy for a person at a western standard of living (approximately 3 GWh) would require on the order of the volume of a soda can of low enriched uranium, resulting in a similar volume of spent fuel generated.[120][121][122]

Waste disposal

 
Nuclear waste flasks generated by the United States during the Cold War are stored underground at the Waste Isolation Pilot Plant (WIPP) in New Mexico. The facility is seen as a potential demonstration for storing spent fuel from civilian reactors.

Following interim storage in a spent fuel pool, the bundles of used fuel rod assemblies of a typical nuclear power station are often stored on site in dry cask storage vessels.[123] Presently, waste is mainly stored at individual reactor sites and there are over 430 locations around the world where radioactive material continues to accumulate.

Disposal of nuclear waste is often considered the most politically divisive aspect in the lifecycle of a nuclear power facility.[124] With the lack of movement of nuclear waste in the 2 billion year old natural nuclear fission reactors in Oklo, Gabon being cited as "a source of essential information today."[125][126] Experts suggest that centralized underground repositories which are well-managed, guarded, and monitored, would be a vast improvement.[124] There is an "international consensus on the advisability of storing nuclear waste in deep geological repositories".[127] With the advent of new technologies, other methods including horizontal drillhole disposal into geologically inactive areas have been proposed.[128][129]

 
Most waste packaging, small-scale experimental fuel recycling chemistry and radiopharmaceutical refinement is conducted within remote-handled hot cells.

There are no commercial scale purpose built underground high-level waste repositories in operation.[127][130][131] However, in Finland the Onkalo spent nuclear fuel repository of the Olkiluoto Nuclear Power Plant is under construction as of 2015.[132]

Reprocessing

Most thermal-neutron reactors run on a once-through nuclear fuel cycle, mainly due to the low price of fresh uranium. However, many reactors are also fueled with recycled fissionable materials that remain in spent nuclear fuel. The most common fissionable material that is recycled is the reactor-grade plutonium (RGPu) that is extracted from spent fuel, it is mixed with uranium oxide and fabricated into mixed-oxide or MOX fuel. Because thermal LWRs remain the most common reactor worldwide, this type of recycling is the most common. It is considered to increase the sustainability of the nuclear fuel cycle, reduce the attractiveness of spent fuel to theft, and lower the volume of high level nuclear waste.[133] Spent MOX fuel cannot generally be recycled for use in thermal-neutron reactors. This issue does not affect fast-neutron reactors, which are therefore preferred in order to achieve the full energy potential of the original uranium.[134][135]

The main constituent of spent fuel from LWRs is slightly enriched uranium. This can be recycled into reprocessed uranium (RepU), which can be used in a fast reactor, used directly as fuel in CANDU reactors, or re-enriched for another cycle through an LWR. Re-enriching of reprocessed uranium is common in France and Russia.[136] Reprocessed uranium is also safer in terms of nuclear proliferation potential.[137][138][139]

Reprocessing has the potential to recover up to 95% of the uranium and plutonium fuel in spent nuclear fuel, as well as reduce long-term radioactivity within the remaining waste. However, reprocessing has been politically controversial because of the potential for nuclear proliferation and varied perceptions of increasing the vulnerability to nuclear terrorism.[134][140] Reprocessing also leads to higher fuel cost compared to the once-through fuel cycle.[134][140] While reprocessing reduces the volume of high-level waste, it does not reduce the fission products that are the primary causes of residual heat generation and radioactivity for the first few centuries outside the reactor. Thus, reprocessed waste still requires an almost identical treatment for the initial first few hundred years.

Reprocessing of civilian fuel from power reactors is currently done in France, the United Kingdom, Russia, Japan, and India. In the United States, spent nuclear fuel is currently not reprocessed.[136] The La Hague reprocessing facility in France has operated commercially since 1976 and is responsible for half the world's reprocessing as of 2010.[141] It produces MOX fuel from spent fuel derived from several countries. More than 32,000 tonnes of spent fuel had been reprocessed as of 2015, with the majority from France, 17% from Germany, and 9% from Japan.[142]

Breeding

 
Nuclear fuel assemblies being inspected before entering a pressurized water reactor in the United States

Breeding is the process of converting non-fissile material into fissile material that can be used as nuclear fuel. The non-fissile material that can be used for this process is called fertile material, and constitute the vast majority of current nuclear waste. This breeding process occurs naturally in breeder reactors. As opposed to light water thermal-neutron reactors, which use uranium-235 (0.7% of all natural uranium), fast-neutron breeder reactors use uranium-238 (99.3% of all natural uranium) or thorium. A number of fuel cycles and breeder reactor combinations are considered to be sustainable or renewable sources of energy.[143][144] In 2006 it was estimated that with seawater extraction, there was likely five billion years' worth of uranium resources for use in breeder reactors.[145]

Breeder technology has been used in several reactors, but as of 2006, the high cost of reprocessing fuel safely requires uranium prices of more than US$200/kg before becoming justified economically.[146] Breeder reactors are however being developed for their potential to burn up all of the actinides (the most active and dangerous components) in the present inventory of nuclear waste, while also producing power and creating additional quantities of fuel for more reactors via the breeding process.[147][148] As of 2017, there are two breeders producing commercial power, BN-600 reactor and the BN-800 reactor, both in Russia.[149] The Phénix breeder reactor in France was powered down in 2009 after 36 years of operation.[149] Both China and India are building breeder reactors. The Indian 500 MWe Prototype Fast Breeder Reactor is in the commissioning phase,[150] with plans to build more.[151]

Another alternative to fast-neutron breeders are thermal-neutron breeder reactors that use uranium-233 bred from thorium as fission fuel in the thorium fuel cycle.[152] Thorium is about 3.5 times more common than uranium in the Earth's crust, and has different geographic characteristics.[152] India's three-stage nuclear power programme features the use of a thorium fuel cycle in the third stage, as it has abundant thorium reserves but little uranium.[152]

Decommissioning

Nuclear decommissioning is the process of dismantling a nuclear facility to the point that it no longer requires measures for radiation protection,[153] returning the facility and its parts to a safe enough level to be entrusted for other uses.[154] Due to the presence of radioactive materials, nuclear decommissioning presents technical and economic challenges.[155] The costs of decommissioning are generally spread over the lifetime of a facility and saved in a decommissioning fund.[156]

Production

 
The status of nuclear power globally (click for legend)
 
Share of electricity production from nuclear, 2015[157]

2019 world electricity generation by source (total generation was 27 petawatt-hours)[158][159]

  Coal (37%)
  Natural gas (24%)
  Hydro (16%)
  Nuclear (10%)
  Wind (5%)
  Solar (3%)
  Other (5%)

Civilian nuclear power supplied 2,586 terawatt hours (TWh) of electricity in 2019, equivalent to about 10% of global electricity generation, and was the second largest low-carbon power source after hydroelectricity.[37][160] Since electricity accounts for about 25% of world energy consumption, nuclear power's contribution to global energy was about 2.5% in 2011.[161] This is a little more than the combined global electricity production from wind, solar, biomass and geothermal power, which together provided 2% of global final energy consumption in 2014.[162] Nuclear power's share of global electricity production has fallen from 16.5% in 1997, in large part because the economics of nuclear power have become more difficult.[163]

As of March 2022, there are 439 civilian fission reactors in the world, with a combined electrical capacity of 392 gigawatt (GW). There are also 56 nuclear power reactors under construction and 96 reactors planned, with a combined capacity of 62 GW and 96 GW, respectively.[164] The United States has the largest fleet of nuclear reactors, generating over 800 TWh per year with an average capacity factor of 92%.[165] Most reactors under construction are generation III reactors in Asia.[166]

Regional differences in the use of nuclear power are large. The United States produces the most nuclear energy in the world, with nuclear power providing 20% of the electricity it consumes, while France produces the highest percentage of its electrical energy from nuclear reactors—71% in 2019.[18] In the European Union, nuclear power provides 26% of the electricity as of 2018.[167] Nuclear power is the single largest low-carbon electricity source in the United States,[168] and accounts for two-thirds of the European Union's low-carbon electricity.[169]Nuclear energy policy differs among European Union countries, and some, such as Austria, Estonia, Ireland and Italy, have no active nuclear power stations.

In addition, there were approximately 140 naval vessels using nuclear propulsion in operation, powered by about 180 reactors.[170][171] These include military and some civilian ships, such as nuclear-powered icebreakers.[172]

International research is continuing into additional uses of process heat such as hydrogen production (in support of a hydrogen economy), for desalinating sea water, and for use in district heating systems.[173]

Economics

The economics of new nuclear power plants is a controversial subject and multi-billion-dollar investments depend on the choice of energy sources. Nuclear power plants typically have high capital costs for building the plant. For this reason, comparison with other power generation methods is strongly dependent on assumptions about construction timescales and capital financing for nuclear plants. Fuel costs account for about 30 percent of the operating costs, while prices are subject to the market.[174]

The high cost of construction is one of the biggest challenges for nuclear power plants. A new 1,100 MW plant is estimated to cost between $6 billion to $9 billion.[175] Nuclear power cost trends show large disparity by nation, design, build rate and the establishment of familiarity in expertise. The only two nations for which data is available that saw cost decreases in the 2000s were India and South Korea.[176]

Analysis of the economics of nuclear power must also take into account who bears the risks of future uncertainties. As of 2010, all operating nuclear power plants have been developed by state-owned or regulated electric utility monopolies.[177] Many countries have since liberalized the electricity market where these risks, and the risk of cheaper competitors emerging before capital costs are recovered, are borne by plant suppliers and operators rather than consumers, which leads to a significantly different evaluation of the economics of new nuclear power plants.[178]

The levelized cost of electricity (LCOE) from a new nuclear power plant is estimated to be 69 USD/MWh, according to an analysis by the International Energy Agency and the OECD Nuclear Energy Agency. This represents the median cost estimate for an nth-of-a-kind nuclear power plant to be completed in 2025, at a discount rate of 7%. Nuclear power was found to be the least-cost option among dispatchable technologies.[179] Variable renewables can generate cheaper electricity: the median cost of onshore wind power was estimated to be 50 USD/MWh, and utility-scale solar power 56 USD/MWh.[179] At the assumed CO2 emission cost of 30 USD/ton, power from coal (88 USD/MWh) and gas (71 USD/MWh) is more expensive than low-carbon technologies. Electricity from long-term operation of nuclear power plants by lifetime extension was found the be the least-cost option, at 32 USD/MWh.[179] Measures to mitigate global warming, such as a carbon tax or carbon emissions trading, may favor the economics of nuclear power.[180][181] Extreme weather events, including events made more severe by climate change, are decreasing all energy source reliability including nuclear energy by a small degree, depending on location siting.[182][183]

New small modular reactors, such as those developed by NuScale Power, are aimed at reducing the investment costs for new construction by making the reactors smaller and modular, so that they can be built in a factory.

Certain designs had considerable early positive economics, such as the CANDU, which realized much higher capacity factor and reliability when compared to generation II light water reactors up to the 1990s.[184]

Nuclear power plants, though capable of some grid-load following, are typically run as much as possible to keep the cost of the generated electrical energy as low as possible, supplying mostly base-load electricity.[185] Due to the on-line refueling reactor design, PHWRs (of which the CANDU design is a part) continue to hold many world record positions for longest continual electricity generation, often over 800 days.[186] The specific record as of 2019 is held by a PHWR at Kaiga Atomic Power Station, generating electricity continuously for 962 days.[187]

Costs not considered in LCOE calculations include funds for research and development, and disasters (the Fukushima disaster is estimated to cost taxpayers ≈$187 billion[188]). Governments were found to in some cases force "consumers to pay upfront for potential cost overruns"[82] or subsidize uneconomic nuclear energy[189] or be required to do so.[54] Nuclear operators are liable to pay for the waste management in the EU.[190] In the U.S. the Congress reportedly decided 40 years ago that the nation, and not private companies, would be responsible for storing radioactive waste with taxpayers paying for the costs.[191] The World Nuclear Waste Report 2019 found that "even in countries in which the polluter-pays-principle is a legal requirement, it is applied incompletely" and notes the case of the German Asse II deep geological disposal facility, where the retrieval of large amounts of waste has to be paid for by taxpayers.[192] Similarly, other forms of energy, including fossil fuels and renewables, have a portion of their costs covered by governments.[193]

Use in space

 
The multi-mission radioisotope thermoelectric generator (MMRTG), used in several space missions such as the Curiosity Mars rover

The most common use of nuclear power in space is the use of radioisotope thermoelectric generators, which use radioactive decay to generate power. These power generators are relatively small scale (few kW), and they are mostly used to power space missions and experiments for long periods where solar power is not available in sufficient quantity, such as in the Voyager 2 space probe.[194] A few space vehicles have been launched using nuclear reactors: 34 reactors belong to the Soviet RORSAT series and one was the American SNAP-10A.[194]

Both fission and fusion appear promising for space propulsion applications, generating higher mission velocities with less reaction mass.[194][195]

Safety

 
Death rates from air pollution and accidents related to energy production, measured in deaths in the past per terawatt hours (TWh)

Nuclear power plants have three unique characteristics that affect their safety, as compared to other power plants. Firstly, intensely radioactive materials are present in a nuclear reactor. Their release to the environment could be hazardous. Secondly, the fission products, which make up most of the intensely radioactive substances in the reactor, continue to generate a significant amount of decay heat even after the fission chain reaction has stopped. If the heat cannot be removed from the reactor, the fuel rods may overheat and release radioactive materials. Thirdly, a criticality accident (a rapid increase of the reactor power) is possible in certain reactor designs if the chain reaction cannot be controlled. These three characteristics have to be taken into account when designing nuclear reactors.[196]

All modern reactors are designed so that an uncontrolled increase of the reactor power is prevented by natural feedback mechanisms, a concept known as negative void coefficient of reactivity. If the temperature or the amount of steam in the reactor increases, the fission rate inherently decreases. The chain reaction can also be manually stopped by inserting control rods into the reactor core. Emergency core cooling systems (ECCS) can remove the decay heat from the reactor if normal cooling systems fail.[197] If the ECCS fails, multiple physical barriers limit the release of radioactive materials to the environment even in the case of an accident. The last physical barrier is the large containment building.[196]

With a death rate of 0.07 per TWh, nuclear power is the safest energy source per unit of energy generated in terms of mortality when the historical track-record is considered.[198] Energy produced by coal, petroleum, natural gas and hydropower has caused more deaths per unit of energy generated due to air pollution and energy accidents. This is found when comparing the immediate deaths from other energy sources to both the immediate and the latent, or predicted, indirect cancer deaths from nuclear energy accidents.[199][200] When the direct and indirect fatalities (including fatalities resulting from the mining and air pollution) from nuclear power and fossil fuels are compared,[201] the use of nuclear power has been calculated to have prevented about 1.84 million deaths from air pollution between 1971 and 2009, by reducing the proportion of energy that would otherwise have been generated by fossil fuels.[202][203] Following the 2011 Fukushima nuclear disaster, it has been estimated that if Japan had never adopted nuclear power, accidents and pollution from coal or gas plants would have caused more lost years of life.[204]

Serious impacts of nuclear accidents are often not directly attributable to radiation exposure, but rather social and psychological effects. Evacuation and long-term displacement of affected populations created problems for many people, especially the elderly and hospital patients.[205] Forced evacuation from a nuclear accident may lead to social isolation, anxiety, depression, psychosomatic medical problems, reckless behavior, and suicide. A comprehensive 2005 study on the aftermath of the Chernobyl disaster concluded that the mental health impact is the largest public health problem caused by the accident.[206]Frank N. von Hippel, an American scientist, commented that a disproportionate fear of ionizing radiation (radiophobia) could have long-term psychological effects on the population of contaminated areas following the Fukushima disaster.[207]

Accidents

 
Following the 2011 Fukushima Daiichi nuclear disaster, the world's worst nuclear accident since 1986, 50,000 households were displaced after radiation leaked into the air, soil and sea.[208] Radiation checks led to bans of some shipments of vegetables and fish.[209]
 
Reactor decay heat as a fraction of full power after the reactor shutdown, using two different correlations. To remove the decay heat, reactors need cooling after the shutdown of the fission reactions. A loss of the ability to remove decay heat caused the Fukushima accident.

Some serious nuclear and radiation accidents have occurred. The severity of nuclear accidents is generally classified using the International Nuclear Event Scale (INES) introduced by the International Atomic Energy Agency (IAEA). The scale ranks anomalous events or accidents on a scale from 0 (a deviation from normal operation that poses no safety risk) to 7 (a major accident with widespread effects). There have been three accidents of level 5 or higher in the civilian nuclear power industry, two of which, the Chernobyl accident and the Fukushima accident, are ranked at level 7.

The first major nuclear accidents were the Kyshtym disaster in the Soviet Union and the Windscale fire in the United Kingdom, both in 1957. The first major accident at a nuclear reactor in the USA occurred in 1961 at the SL-1, a U.S. Army experimental nuclear power reactor at the Idaho National Laboratory. An uncontrolled chain reaction resulted in a steam explosion which killed the three crew members and caused a meltdown.[210][211] Another serious accident happened in 1968, when one of the two liquid-metal-cooled reactors on board the Soviet submarine K-27 underwent a fuel element failure, with the emission of gaseous fission products into the surrounding air, resulting in 9 crew fatalities and 83 injuries.[212]

The Fukushima Daiichi nuclear accident was caused by the 2011 Tohoku earthquake and tsunami. The accident has not caused any radiation-related deaths but resulted in radioactive contamination of surrounding areas. The difficult cleanup operation is expected to cost tens of billions of dollars over 40 or more years.[213][214] The Three Mile Island accident in 1979 was a smaller scale accident, rated at INES level 5. There were no direct or indirect deaths caused by the accident.[215]

The impact of nuclear accidents is controversial. According to Benjamin K. Sovacool, fission energy accidents ranked first among energy sources in terms of their total economic cost, accounting for 41 percent of all property damage attributed to energy accidents.[216] Another analysis found that coal, oil, liquid petroleum gas and hydroelectric accidents (primarily due to the Banqiao Dam disaster) have resulted in greater economic impacts than nuclear power accidents.[217] The study compares latent cancer deaths attributable to nuclear with immediate deaths from other energy sources per unit of energy generated, and does not include fossil fuel related cancer and other indirect deaths created by the use of fossil fuel consumption in its "severe accident" (an accident with more than five fatalities) classification. The Chernobyl accident in 1986 caused approximately 50 deaths from direct and indirect effects, and some temporary serious injuries from acute radiation syndrome.[218] The future predicted mortality from increases in cancer rates is estimated at 4000 in the decades to come.[219][220][221] However, the costs have been large and are increasing.

Nuclear power works under an insurance framework that limits or structures accident liabilities in accordance with national and international conventions.[222] It is often argued that this potential shortfall in liability represents an external cost not included in the cost of nuclear electricity. This cost is small, amounting to about 0.1% of the levelized cost of electricity, according to a study by the Congressional Budget Office in the United States.[223] These beyond-regular insurance costs for worst-case scenarios are not unique to nuclear power. Hydroelectric power plants are similarly not fully insured against a catastrophic event such as dam failures. For example, the failure of the Banqiao Dam caused the death of an estimated 30,000 to 200,000 people, and 11 million people lost their homes. As private insurers base dam insurance premiums on limited scenarios, major disaster insurance in this sector is likewise provided by the state.[224]

Attacks and sabotage

Terrorists could target nuclear power plants in an attempt to release radioactive contamination into the community. The United States 9/11 Commission has said that nuclear power plants were potential targets originally considered for the September 11, 2001 attacks. An attack on a reactor's spent fuel pool could also be serious, as these pools are less protected than the reactor core. The release of radioactivity could lead to thousands of near-term deaths and greater numbers of long-term fatalities.[225]

In the United States, the NRC carries out "Force on Force" (FOF) exercises at all nuclear power plant sites at least once every three years.[225] In the United States, plants are surrounded by a double row of tall fences which are electronically monitored. The plant grounds are patrolled by a sizeable force of armed guards.[226]

Insider sabotage is also a threat because insiders can observe and work around security measures. Successful insider crimes depended on the perpetrators' observation and knowledge of security vulnerabilities.[227] A fire caused 5–10 million dollars worth of damage to New York's Indian Point Energy Center in 1971.[228] The arsonist was a plant maintenance worker.[229]

Proliferation

 
United States and USSR/Russian nuclear weapons stockpiles, 1945–2006. The Megatons to Megawatts Program was the main driving force behind the sharp reduction in the quantity of nuclear weapons worldwide since the cold war ended.[230][231]
 
The guided-missile cruiser USS Monterey (CG 61) receives fuel at sea (FAS) from the Nimitz-class aircraft carrier USS George Washington (CVN 73).

Nuclear proliferation is the spread of nuclear weapons, fissionable material, and weapons-related nuclear technology to states that do not already possess nuclear weapons. Many technologies and materials associated with the creation of a nuclear power program have a dual-use capability, in that they can also be used to make nuclear weapons. For this reason, nuclear power presents proliferation risks.

Nuclear power program can become a route leading to a nuclear weapon. An example of this is the concern over Iran's nuclear program.[232] The re-purposing of civilian nuclear industries for military purposes would be a breach of the Non-Proliferation Treaty, to which 190 countries adhere. As of April 2012, there are thirty one countries that have civil nuclear power plants,[233] of which nine have nuclear weapons. The vast majority of these nuclear weapons states have produced weapons before commercial nuclear power stations.

A fundamental goal for global security is to minimize the nuclear proliferation risks associated with the expansion of nuclear power.[232] The Global Nuclear Energy Partnership was an international effort to create a distribution network in which developing countries in need of energy would receive nuclear fuel at a discounted rate, in exchange for that nation agreeing to forgo their own indigenous development of a uranium enrichment program. The France-based Eurodif/European Gaseous Diffusion Uranium Enrichment Consortium is a program that successfully implemented this concept, with Spain and other countries without enrichment facilities buying a share of the fuel produced at the French-controlled enrichment facility, but without a transfer of technology.[234] Iran was an early participant from 1974 and remains a shareholder of Eurodif via Sofidif.

A 2009 United Nations report said that:

the revival of interest in nuclear power could result in the worldwide dissemination of uranium enrichment and spent fuel reprocessing technologies, which present obvious risks of proliferation as these technologies can produce fissile materials that are directly usable in nuclear weapons.[235]

On the other hand, power reactors can also reduce nuclear weapons arsenals when military-grade nuclear materials are reprocessed to be used as fuel in nuclear power plants. The Megatons to Megawatts Program is considered the single most successful non-proliferation program to date.[230] Up to 2005, the program had processed $8 billion of high enriched, weapons-grade uranium into low enriched uranium suitable as nuclear fuel for commercial fission reactors by diluting it with natural uranium. This corresponds to the elimination of 10,000 nuclear weapons.[236] For approximately two decades, this material generated nearly 10 percent of all the electricity consumed in the United States, or about half of all U.S. nuclear electricity, with a total of around 7,000 TWh of electricity produced.[237] In total it is estimated to have cost $17 billion, a "bargain for US ratepayers", with Russia profiting $12 billion from the deal.[237] Much needed profit for the Russian nuclear oversight industry, which after the collapse of the Soviet economy, had difficulties paying for the maintenance and security of the Russian Federations highly enriched uranium and warheads.[238] The Megatons to Megawatts Program was hailed as a major success by anti-nuclear weapon advocates as it has largely been the driving force behind the sharp reduction in the number of nuclear weapons worldwide since the cold war ended.[230] However, without an increase in nuclear reactors and greater demand for fissile fuel, the cost of dismantling and down blending has dissuaded Russia from continuing their disarmament. As of 2013 Russia appears to not be interested in extending the program.[239]

Environmental impact

 
The Ikata Nuclear Power Plant, a pressurized water reactor that cools by utilizing a secondary coolant heat exchanger with a large body of water, an alternative cooling approach to large cooling towers

Being a low-carbon energy source with relatively little land-use requirements, nuclear energy can have a positive environmental impact. It also requires a constant supply of significant amounts of water and affects the environment through mining and milling.[240][241][242][243] Its largest potential negative impacts on the environment may arise from its transgenerational risks for nuclear weapons proliferation that may increase risks of their use in the future, risks for problems associated with the management of the radioactive waste such as groundwater contamination, risks for accidents and for risks for various forms of attacks on waste storage sites or reprocessing- and power-plants.[70][244][245][246][247][243][248][249] However, these remain mostly only risks as historically there have only been few disasters at nuclear power plants with known relatively substantial environmental impacts.

Carbon emissions

 
Life-cycle greenhouse gas emissions of electricity supply technologies, median values calculated by IPCC[250]

Nuclear power is one of the leading low carbon power generation methods of producing electricity, and in terms of total life-cycle greenhouse gas emissions per unit of energy generated, has emission values comparable to or lower than renewable energy.[251][252] A 2014 analysis of the carbon footprint literature by the Intergovernmental Panel on Climate Change (IPCC) reported that the embodied total life-cycle emission intensity of nuclear power has a median value of 12 g CO2eq/kWh, which is the lowest among all commercial baseload energy sources.[250][253] This is contrasted with coal and natural gas at 820 and 490 g CO2 eq/kWh.[250][253] As of 2021, nuclear reactors worldwide have helped avoid the emission of 72 billion tonnes of carbon dioxide since 1970, compared to coal-fired electricity generation, according to a report.[203][254]

Radiation

The average dose from natural background radiation is 2.4 millisievert per year (mSv/a) globally. It varies between 1 mSv/a and 13 mSv/a, depending mostly on the geology of the location. According to the United Nations (UNSCEAR), regular nuclear power plant operations, including the nuclear fuel cycle, increases this amount by 0.0002 mSv/a of public exposure as a global average. The average dose from operating nuclear power plants to the local populations around them is less than 0.0001 mSv/a.[255] For comparison, the average dose to those living within 50 miles of a coal power plant is over three times this dose, at 0.0003 mSv/a.[256]

Chernobyl resulted in the most affected surrounding populations and male recovery personnel receiving an average initial 50 to 100 mSv over a few hours to weeks, while the remaining global legacy of the worst nuclear power plant accident in average exposure is 0.002 mSv/a and is continuously dropping at the decaying rate, from the initial high of 0.04 mSv per person averaged over the entire populace of the Northern Hemisphere in the year of the accident in 1986.[255]

Debate

 
A comparison of prices over time for energy from nuclear fission and from other sources. Over the presented time, thousands of wind turbines and similar were built on assembly lines in mass production resulting in an economy of scale. While nuclear remains bespoke, many first of their kind facilities added in the timeframe indicated and none are in serial production. Our World in Data notes that this cost is the global average, while the 2 projects that drove nuclear pricing upwards were in the US. The organization recognises that the median cost of the most exported and produced nuclear energy facility in the 2010s the South Korean APR1400, remained "constant", including in export.[257]
LCOE is a measure of the average net present cost of electricity generation for a generating plant over its lifetime. As a metric, it remains controversial as the lifespan of units are not independent but manufacturer projections, not a demonstrated longevity.

The nuclear power debate concerns the controversy which has surrounded the deployment and use of nuclear fission reactors to generate electricity from nuclear fuel for civilian purposes.[25][258][26]

Proponents of nuclear energy regard it as a sustainable energy source that reduces carbon emissions and increases energy security by decreasing dependence on other energy sources that are also[87][88][89] often dependent on imports.[259][260][261] For example, proponents note that annually, nuclear-generated electricity reduces 470 million metric tons of carbon dioxide emissions that would otherwise come from fossil fuels.[262] Additionally, the amount of comparatively low waste that nuclear energy does create is safely disposed of by the large scale nuclear energy production facilities or it is repurposed/recycled for other energy uses.[263] M. King Hubbert, who popularized the concept of peak oil, saw oil as a resource that would run out and considered nuclear energy its replacement.[264] Proponents also claim that the present quantity of nuclear waste is small and can be reduced through the latest technology of newer reactors and that the operational safety record of fission-electricity in terms of deaths is so far "unparalleled".[14] Kharecha and Hansen estimated that "global nuclear power has prevented an average of 1.84 million air pollution-related deaths and 64 gigatonnes of CO2-equivalent (GtCO2-eq) greenhouse gas (GHG) emissions that would have resulted from fossil fuel burning" and, if continued, it could prevent up to 7 million deaths and 240 GtCO2-eq emissions by 2050.[203]

Proponents also bring to attention the opportunity cost of utilizing other forms of electricity. For example, the Environmental Protection Agency estimates that coal kills 30,000 people a year,[265] as a result of its environmental impact, while 60 people died in the Chernobyl disaster.[266] A real world example of impact provided by proponents is the 650,000 ton increase in carbon emissions in the two months following the closure of the Vermont Yankee nuclear plant.[267]

Opponents believe that nuclear power poses many threats to people's health and environment[268][269] such as the risk of nuclear weapons proliferation, long-term safe waste management and terrorism in the future.[270][271] They also contend that nuclear power plants are complex systems where many things can and have gone wrong.[272][273] Costs of the Chernobyl disaster amount to ≈$68 billion as of 2019 and are increasing,[34] the Fukushima disaster is estimated to cost taxpayers ~$187 billion,[188] and radioactive waste management is estimated to cost the EU nuclear operators ~$250 billion by 2050.[190] However, in countries that already use nuclear energy, when not considering reprocessing, intermediate nuclear waste disposal costs could be relatively fixed to certain but unknown degrees[274] "as the main part of these costs stems from the operation of the intermediate storage facility".[275]

Critics find that one of the largest drawbacks to building new nuclear fission power plants are the large construction and operating costs when compared to alternatives of sustainable energy sources.[53][276][81][242][277] Further costs include costs for ongoing research and development, expensive reprocessing in cases where such is practiced[70][71][72][74] and decommissioning.[278][279][280] Proponents note that focussing on the Levelized Cost of Energy (LCOE), however, ignores the value premium associated with 24/7 dispatchable electricity and the cost of storage and backup systems necessary to integrate variable energy sources into a reliable electrical grid.[281] "Nuclear thus remains the dispatchable low-carbon technology with the lowest expected costs in 2025. Only large hydro reservoirs can provide a similar contribution at comparable costs but remain highly dependent on the natural endowments of individual countries."[282]

 
Anti-nuclear protest near nuclear waste disposal centre at Gorleben in northern Germany

Overall, many opponents find that nuclear energy cannot meaningfully contribute to climate change mitigation. In general, they find it to be, too dangerous, too expensive, to take too long for deployment, to be an obstacle to achieving a transition towards sustainability and carbon-neutrality,[81][283][284][285] effectively being a distracting[286][287] competition for resources (i.e. human, financial, time, infrastructure and expertise) for the deployment and development of alternative, sustainable, energy system technologies[82][287][81][288] (such as for wind, ocean and solar[81] – including e.g. floating solar – as well as ways to manage their intermittency other than nuclear baseload[289] generation such as dispatchable generation, renewables-diversification,[290][291] super grids, flexible energy demand and supply regulating smart grids and energy storage[292][293][294][295][296] technologies).[297][298][299][300][301][302][303][304][249]

Nevertheless, there is ongoing research and debate over costs of new nuclear, especially in regions where i.a. seasonal energy storage is difficult to provide and which aim to phase out fossil fuels in favor of low carbon power faster than the global average.[305] Some find that financial transition costs for a 100% renewables-based European energy system that has completely phased out nuclear energy could be more costly by 2050 based on current technologies (i.e. not considering potential advances in e.g. green hydrogen, transmission and flexibility capacities, ways to reduce energy needs, geothermal energy and fusion energy) when the grid only extends across Europe.[306] Arguments of economics and safety are used by both sides of the debate.

Comparison with renewable energy

Slowing global warming requires a transition to a low-carbon economy, mainly by burning far less fossil fuel. Limiting global warming to 1.5 °C is technically possible if no new fossil fuel power plants are built from 2019.[307] This has generated considerable interest and dispute in determining the best path forward to rapidly replace fossil-based fuels in the global energy mix,[308][309] with intense academic debate.[310][311] Sometimes the IEA says that countries without nuclear should develop it as well as their renewable power.[312]

World total primary energy supply of 162,494 TWh (or 13,792 Mtoe) by fuels in 2017 (IEA, 2019)[313]: 6, 8 

  Oil (32%)
  Coal/Peat/Shale (27.1%)
  Natural Gas (22.2%)
  Biofuels and waste (9.5%)
  Nuclear (4.9%)
  Hydro (2.5%)
  Others (Renewables) (1.8%)

Several studies suggest that it might be theoretically possible to cover a majority of world energy generation with new renewable sources. The Intergovernmental Panel on Climate Change (IPCC) has said that if governments were supportive, renewable energy supply could account for close to 80% of the world's energy use by 2050.[314] While in developed nations the economically feasible geography for new hydropower is lacking, with every geographically suitable area largely already exploited,[315] some proponents of wind and solar energy claim these resources alone could eliminate the need for nuclear power.[311][316]

Nuclear power is comparable to, and in some cases lower, than many renewable energy sources in terms of lives lost in the past per unit of electricity delivered.[201][199][317] Depending on recycling of renewable energy technologies, nuclear reactors may produce a much smaller volume of waste, although much more toxic, expensive to manage and longer-lived.[318][245] A nuclear plant also needs to be disassembled and removed and much of the disassembled nuclear plant needs to be stored as low-level nuclear waste for a few decades.[319] The disposal and management of the wide variety[320] of radioactive waste, of which there are over one quarter of a million tons as of 2018, can cause future damage and costs across the world for over or during hundreds of thousands of years[321][322][323] – possibly over a million years,[324][325][326][327] due to issues such as leakage,[328] malign retrieval, vulnerability to attacks (including of reprocessing[73][70] and power plants), groundwater contamination, radiation and leakage to above ground, brine leakage or bacterial corrosion.[329][324][330][331] The European Commission Joint Research Centre found that as of 2021 the necessary technologies for geological disposal of nuclear waste are now available and can be deployed.[332] Corrosion experts noted in 2020 that putting the problem of storage off any longer "isn't good for anyone".[333] Separated plutonium and enriched uranium could be used for nuclear weapons, which – even with the current centralized control (e.g. state-level) and level of prevalence – are considered to be a difficult and substantial global risk for substantial future impacts on human health, lives, civilization and the environment.[70][244][245][246][247]

Speed of transition and investment needed

Analysis in 2015 by professor Barry W. Brook and colleagues found that nuclear energy could displace or remove fossil fuels from the electric grid completely within 10 years. This finding was based on the historically modest and proven rate at which nuclear energy was added in France and Sweden during their building programs in the 1980s.[334][335] In a similar analysis, Brook had earlier determined that 50% of all global energy, including transportation synthetic fuels etc., could be generated within approximately 30 years if the global nuclear fission build rate was identical to historical proven installation rates calculated in GW per year per unit of global GDP (GW/year/$).[336] This is in contrast to the conceptual studies for 100% renewable energy systems, which would require an order of magnitude more costly global investment per year, which has no historical precedent.[337] These renewable scenarios would also need far greater land devoted to onshore wind and onshore solar projects.[336][337] Brook notes that the "principal limitations on nuclear fission are not technical, economic or fuel-related, but are instead linked to complex issues of societal acceptance, fiscal and political inertia, and inadequate critical evaluation of the real-world constraints facing [the other] low-carbon alternatives."[336]

Scientific data indicates that – assuming 2021 emissions levels – humanity only has a carbon budget equivalent to 11 years of emissions left for limiting warming to 1.5 °C[338][339] while the construction of new nuclear reactors took a median of 7.2–10.9 years in 2018–2020,[331] substantially longer than, alongside other measures, scaling up the deployment of wind and solar – especially for novel reactor types – as well as being more risky, often delayed and more dependent on state-support.[340][341][284][286][81][342][297] Researchers have cautioned that novel nuclear technologies – which have been in development since decades,[343][81][276] are less tested, have higher proliferation risks, have more new safety problems, are often far from commercialization and are more expensive[276][81][242][344] – are not available in time.[77][82][345][286][346][296][347] Critics of nuclear energy often only oppose nuclear fission energy but not nuclear fusion; however, fusion energy is unlikely to be commercially widespread before 2050.[348][349][350][351][352]

Land use

The median land area used by US nuclear power stations per 1 GW installed capacity is 1.3 square miles.[353][354] To generate the same amount of electricity annually (taking into account capacity factors) from solar PV would require about 60 square miles, and from a wind farm about 310 square miles.[353][354] Not included in this is land required for the associated transmission lines, water supply, rail lines, mining and processing of nuclear fuel, and for waste disposal.[355]

Research

Advanced fission reactor designs

Current fission reactors in operation around the world are second or third generation systems, with most of the first-generation systems having been already retired. Research into advanced generation IV reactor types was officially started by the Generation IV International Forum (GIF) based on eight technology goals, including to improve economics, safety, proliferation resistance, natural resource utilization and the ability to consume existing nuclear waste in the production of electricity. Most of these reactors differ significantly from current operating light water reactors, and are expected to be available for commercial construction after 2030.[356]

Hybrid fusion-fission

Hybrid nuclear power is a proposed means of generating power by the use of a combination of nuclear fusion and fission processes. The concept dates to the 1950s and was briefly advocated by Hans Bethe during the 1970s, but largely remained unexplored until a revival of interest in 2009, due to delays in the realization of pure fusion. When a sustained nuclear fusion power plant is built, it has the potential to be capable of extracting all the fission energy that remains in spent fission fuel, reducing the volume of nuclear waste by orders of magnitude, and more importantly, eliminating all actinides present in the spent fuel, substances which cause security concerns.[357]

Fusion

 
Schematic of the ITER tokamak under construction in France

Nuclear fusion reactions have the potential to be safer and generate less radioactive waste than fission.[358][359] These reactions appear potentially viable, though technically quite difficult and have yet to be created on a scale that could be used in a functional power plant. Fusion power has been under theoretical and experimental investigation since the 1950s. Nuclear fusion research is underway but fusion energy is not likely to be commercially widespread before 2050.[360][361][362]

Several experimental nuclear fusion reactors and facilities exist. The largest and most ambitious international nuclear fusion project currently in progress is ITER, a large tokamak under construction in France. ITER is planned to pave the way for commercial fusion power by demonstrating self-sustained nuclear fusion reactions with positive energy gain. Construction of the ITER facility began in 2007, but the project has run into many delays and budget overruns. The facility is now not expected to begin operations until the year 2027–11 years after initially anticipated.[363] A follow on commercial nuclear fusion power station, DEMO, has been proposed.[348][364] There are also suggestions for a power plant based upon a different fusion approach, that of an inertial fusion power plant.

Fusion-powered electricity generation was initially believed to be readily achievable, as fission-electric power had been. However, the extreme requirements for continuous reactions and plasma containment led to projections being extended by several decades. In 2020, more than 80 years after the first attempts, commercialization of fusion power production was thought to be unlikely before 2050.[348][349][350][351][352]

See also

References

  1. ^ a b "PRIS - Home". pris.iaea.org. Retrieved 2022-08-17.
  2. ^ "Reactors: Modern-Day Alchemy - Argonne's Nuclear Science and Technology Legacy". www.ne.anl.gov. Retrieved 24 March 2021.
  3. ^ Wellerstein, Alex (2008). "Inside the atomic patent office". Bulletin of the Atomic Scientists. 64 (2): 26–31. Bibcode:2008BuAtS..64b..26W. doi:10.2968/064002008.
  4. ^ "The Einstein Letter". Atomicarchive.com. Retrieved 2013-06-22.
  5. ^ "Nautilus (SSN-571)". US Naval History and Heritage Command (US Navy).
  6. ^ Wendt, Gerald; Geddes, Donald Porter (1945). The Atomic Age Opens. New York: Pocket Books.
  7. ^ "Reactors Designed by Argonne National Laboratory: Fast Reactor Technology". U.S. Department of Energy, Argonne National Laboratory. 2012. Retrieved 2012-07-25.
  8. ^ "Reactor Makes Electricity". Popular Mechanics. Hearst Magazines. March 1952. p. 105.
  9. ^ a b "50 Years of Nuclear Energy" (PDF). International Atomic Energy Agency. Retrieved 2006-11-09.
  10. ^ "STR (Submarine Thermal Reactor) in "Reactors Designed by Argonne National Laboratory: Light Water Reactor Technology Development"". U.S. Department of Energy, Argonne National Laboratory. 2012. Retrieved 2012-07-25.
  11. ^ Rockwell, Theodore (1992). The Rickover Effect. Naval Institute Press. p. 162. ISBN 978-1-55750-702-0.
  12. ^ "From Obninsk Beyond: Nuclear Power Conference Looks to Future". International Atomic Energy Agency. 2004-06-23. Retrieved 2006-06-27.
  13. ^ Hill, C. N. (2013). An atomic empire : a technical history of the rise and fall of the British atomic energy programme. London: Imperial College Press. ISBN 9781908977434.
  14. ^ a b Bernard L. Cohen (1990). The Nuclear Energy Option: An Alternative for the 90s. New York: Plenum Press. ISBN 978-0-306-43567-6.
  15. ^ Sharon Beder (2006). "The Japanese Situation, English version of conclusion of Sharon Beder, "Power Play: The Fight to Control the World's Electricity"". Soshisha, Japan.
  16. ^ Palfreman, Jon (1997). "Why the French Like Nuclear Energy". Frontline. Public Broadcasting Service. Retrieved 25 August 2007.
  17. ^ Rene de Preneuf. . Archived from the original on 13 August 2007. Retrieved 25 August 2007.
  18. ^ a b "Nuclear Share of Electricity Generation in 2019". Power Reactor Information System. International Atomic Energy Agency. Retrieved 2021-01-09.
  19. ^ Garb Paula (1999). . Journal of Political Ecology. 6. Archived from the original on 2018-06-01. Retrieved 2011-03-14.
  20. ^ a b c Rüdig, Wolfgang, ed. (1990). Anti-nuclear Movements: A World Survey of Opposition to Nuclear Energy. Detroit, MI: Longman Current Affairs. p. 1. ISBN 978-0-8103-9000-3.
  21. ^ Brian Martin (2007). "Opposing nuclear power: past and present". Social Alternatives. 26 (2): 43–47.
  22. ^ Stephen Mills; Roger Williams (1986). Public acceptance of new technologies : an international review. London: Croom Helm. pp. 375–376. ISBN 9780709943198.
  23. ^ Robert Gottlieb (2005). Forcing the Spring: The Transformation of the American Environmental Movement, Revised Edition, Island Press, p. 237.
  24. ^ Falk, Jim (1982). Global Fission: The Battle Over Nuclear Power. Melbourne: Oxford University Press. pp. 95–96. ISBN 978-0-19-554315-5.
  25. ^ a b Walker, J. Samuel (2004). Three Mile Island: A Nuclear Crisis in Historical Perspective (Berkeley: University of California Press), pp. 10–11.
  26. ^ a b Herbert P. Kitschelt (1986). "Political Opportunity and Political Protest: Anti-Nuclear Movements in Four Democracies" (PDF). British Journal of Political Science. 16 (1): 57. doi:10.1017/s000712340000380x. S2CID 154479502.
  27. ^ Herbert P. Kitschelt (1986). "Political Opportunity and Political Protest: Anti-Nuclear Movements in Four Democracies" (PDF). British Journal of Political Science. 16 (1): 71. doi:10.1017/s000712340000380x. S2CID 154479502.
  28. ^ "Costs of Nuclear Power Plants – What Went Wrong?". www.phyast.pitt.edu.
  29. ^ Vance Ginn; Elliott Raia (August 18, 2017). "nuclear energy may soon be free from its tangled regulatory web". Washington Examiner.
  30. ^ "Nuclear Power: Outlook for New U.S. Reactors" (PDF). p. 3.
  31. ^ Cook, James (1985-02-11). "Nuclear Follies". Forbes Magazine.
  32. ^ Thorpe, Gary S. (2015). AP Environmental Science, 6th ed. Barrons Educational Series. ISBN 978-1-4380-6728-5. ISBN 1-4380-6728-3
  33. ^ "Chernobyl Nuclear Accident". www.iaea.org. IAEA. 14 May 2014.
  34. ^ a b "Chernobyl: Assessment of Radiological and Health Impact, 2002 update; Chapter II – The release, dispersion and deposition of radionuclides" (PDF). OECD-NEA. 2002. (PDF) from the original on 22 June 2015. Retrieved 3 June 2015.
  35. ^ Johnson, Thomas (author/director) (2006). The battle of Chernobyl. Play Film / Discovery Channel. (see 1996 interview with Mikhail Gorbachev)
  36. ^ a b "Analysis: Nuclear renaissance could fizzle after Japan quake". Reuters. 2011-03-14. Retrieved 2011-03-14.
  37. ^ a b "Trend in Electricity Supplied". International Atomic Energy Agency. Retrieved 2021-01-09.
  38. ^ "Analysis: The legacy of the Fukushima nuclear disaster". Carbon Brief. 10 March 2016. Retrieved 24 March 2021.
  39. ^ Sylvia Westall & Fredrik Dahl (2011-06-24). "IAEA Head Sees Wide Support for Stricter Nuclear Plant Safety". Scientific American. Archived from the original on 2011-06-25.
  40. ^ Jo Chandler (2011-03-19). "Is this the end of the nuclear revival?". The Sydney Morning Herald.
  41. ^ Aubrey Belford (2011-03-17). "Indonesia to Continue Plans for Nuclear Power". The New York Times.
  42. ^ Piers Morgan (2011-03-17). "Israel Prime Minister Netanyahu: Japan situation has "caused me to reconsider" nuclear power". CNN. Retrieved 2011-03-17.
  43. ^ . xinhuanet.com. 2011-03-18. Archived from the original on March 18, 2011. Retrieved 2011-03-17.
  44. ^ . Kyushu Electric Power Company Inc. 2015-08-11. Archived from the original on 2017-05-25. Retrieved 2015-08-12.
  45. ^ "Japan turns back to nuclear power in post-Fukushima shift". Financial Times. 24 August 2022. Retrieved November 15, 2022.
  46. ^ a b "Japan Is Reopening Nuclear Power Plants and Planning To Build New Ones". August 25, 2022.
  47. ^ "January: Taking a fresh look at the future of nuclear power". www.iea.org.
  48. ^ "Plans for New Reactors Worldwide". World Nuclear Association. October 2015.
  49. ^ "International Energy outlook 2016". US Energy Information Administration. Retrieved 17 August 2016.
  50. ^ "Plans for New Nuclear Reactors Worldwide". www.world-nuclear.org. World Nuclear Association. Retrieved 2018-09-29.
  51. ^ "Can China become a scientific superpower? - The great experiment". The Economist. 12 January 2019. Retrieved 25 January 2019.
  52. ^ "A global nuclear phaseout or renaissance? | DW | 04.02.2021". Deutsche Welle (www.dw.com). Retrieved 25 November 2021.
  53. ^ a b Griffiths, James. "China's gambling on a nuclear future, but is it destined to lose?". CNN. Retrieved 25 November 2021.
  54. ^ a b "Building new nuclear plants in France uneconomical -environment agency". Reuters. 10 December 2018. Retrieved 25 November 2021.
  55. ^ World Nuclear Association. "Nuclear Power in Japan".
  56. ^ "Germany's Uniper to restart coal-fired power plant as Gazprom halts supply to Europe". Reuters. 22 August 2022.
  57. ^ "Macron bets on nuclear in carbon-neutrality push, announces new reactors". Reuters. 10 February 2022.
  58. ^ "Nuclear Power Reactors in the World – 2015 Edition" (PDF). International Atomic Energy Agency (IAEA). Retrieved 26 October 2017.
  59. ^ a b "How does a nuclear reactor make electricity?". www.world-nuclear.org. World Nuclear Association. Retrieved 24 August 2018.
  60. ^ Spyrou, Artemis; Mittig, Wolfgang (2017-12-03). "Atomic age began 75 years ago with the first controlled nuclear chain reaction". Scientific American. Retrieved 2018-11-18.
  61. ^ a b "Stages of the Nuclear Fuel Cycle". NRC Web. Nuclear Regulatory Commission. Retrieved 17 April 2021.
  62. ^ a b c d "Nuclear Fuel Cycle Overview". www.world-nuclear.org. World Nuclear Association. Retrieved 17 April 2021.
  63. ^ "uranium Facts, information, pictures | Encyclopedia.com articles about uranium". Encyclopedia.com. 2001-09-11. Retrieved 2013-06-14.
  64. ^ (PDF). A Policy Brief – Challenges Facing Asia. January 2011. Archived from the original (PDF) on January 16, 2013.
  65. ^ . Nuclear Energy Agency (NEA). 2008-06-03. Archived from the original on 2008-12-05. Retrieved 2008-06-16.
  66. ^ . Nuclear Energy Agency, Organisation for Economic Co-operation and Development. 2008. ISBN 978-92-64-04766-2. Archived from the original on 2009-01-30.
  67. ^ (PDF). p. 271. Archived from the original (PDF) on 2007-12-15. and table 4.10.
  68. ^ a b c . Information and Issue Briefs. World Nuclear Association. 2006. Archived from the original on 2010-06-11. Retrieved 2006-11-09.
  69. ^ (PDF). p. 271. Archived from the original (PDF) on 2007-12-15. and figure 4.10.
  70. ^ a b c d e "Nuclear Reprocessing: Dangerous, Dirty, and Expensive". Union of Concerned Scientists. Retrieved 26 January 2020.
  71. ^ a b "Toward an Assessment of Future Proliferation Risk" (PDF). Retrieved 25 November 2021.
  72. ^ a b Zhang, Hui (1 July 2015). "Plutonium reprocessing, breeder reactors, and decades of debate: A Chinese response". Bulletin of the Atomic Scientists. 71 (4): 18–22. doi:10.1177/0096340215590790. ISSN 0096-3402. S2CID 145763632.
  73. ^ a b Martin, Brian (1 January 2015). "Nuclear power and civil liberties". Faculty of Law, Humanities and the Arts - Papers (Archive): 1–6.
  74. ^ a b Kemp, R. Scott (29 June 2016). "Environmental Detection of Clandestine Nuclear Weapon Programs". Annual Review of Earth and Planetary Sciences. 44 (1): 17–35. Bibcode:2016AREPS..44...17K. doi:10.1146/annurev-earth-060115-012526. hdl:1721.1/105171. ISSN 0084-6597. Although commercial reprocessing involves large, expensive facilities, some of which are identifiable in structure, a small, makeshift operation using standard industrial supplies is feasible (Ferguson 1977, US GAO 1978). Such a plant could be constructed to have no visual signatures that would reveal its location by overhead imaging, could be built in several months, and once operational could produce weapon quantities of fissile material in several days
  75. ^ Monnet, Antoine; Gabriel, Sophie; Percebois, Jacques (1 September 2017). "Long-term availability of global uranium resources" (PDF). Resources Policy. 53: 394–407. doi:10.1016/j.resourpol.2017.07.008. ISSN 0301-4207. However, it can be seen that the simulation in scenario A3 stops in 2075 due to a shortage: the R/P ratio cancels itself out. The detailed calculations also show that even though it does not cancel itself out in scenario C2, the R/P ratio constantly deteriorates, falling from 130 years in 2013 to 10 years around 2100, which raises concerns of a shortage around that time. The exploration constraints thus affect the security of supply.
  76. ^ Haji, Maha N.; Drysdale, Jessica; Buesseler, Ken; Slocum, Alexander H. (25 June 2017). "Ocean Testing of a Symbiotic Device to Harvest Uranium From Seawater Through the Use of Shell Enclosures". OnePetro. {{cite journal}}: Cite journal requires |journal= (help)
  77. ^ a b c Muellner, Nikolaus; Arnold, Nikolaus; Gufler, Klaus; Kromp, Wolfgang; Renneberg, Wolfgang; Liebert, Wolfgang (1 August 2021). "Nuclear energy - The solution to climate change?". Energy Policy. 155: 112363. doi:10.1016/j.enpol.2021.112363. ISSN 0301-4215. S2CID 236254316.
  78. ^ Chen, Yanxin; Martin, Guillaume; Chabert, Christine; Eschbach, Romain; He, Hui; Ye, Guo-an (1 March 2018). "Prospects in China for nuclear development up to 2050" (PDF). Progress in Nuclear Energy. 103: 81–90. doi:10.1016/j.pnucene.2017.11.011. ISSN 0149-1970. S2CID 126267852.
  79. ^ Gabriel, Sophie; Baschwitz, Anne; Mathonnière, Gilles; Eleouet, Tommy; Fizaine, Florian (1 August 2013). "A critical assessment of global uranium resources, including uranium in phosphate rocks, and the possible impact of uranium shortages on nuclear power fleets". Annals of Nuclear Energy. 58: 213–220. doi:10.1016/j.anucene.2013.03.010. ISSN 0306-4549.
  80. ^ Shang, Delei; Geissler, Bernhard; Mew, Michael; Satalkina, Liliya; Zenk, Lukas; Tulsidas, Harikrishnan; Barker, Lee; El-Yahyaoui, Adil; Hussein, Ahmed; Taha, Mohamed; Zheng, Yanhua; Wang, Menglai; Yao, Yuan; Liu, Xiaodong; Deng, Huidong; Zhong, Jun; Li, Ziying; Steiner, Gerald; Bertau, Martin; Haneklaus, Nils (1 April 2021). "Unconventional uranium in China's phosphate rock: Review and outlook". Renewable and Sustainable Energy Reviews. 140: 110740. doi:10.1016/j.rser.2021.110740. ISSN 1364-0321. S2CID 233577205.
  81. ^ a b c d e f g h Wealer, Ben; Breyer, Christian; Hennicke, Peter; Hirsch, Helmut; von Hirschhausen, Christian; Klafka, Peter; Kromp-Kolb, Helga; Präger, Fabian; Steigerwald, Björn; Traber, Thure; Baumann, Franz; Herold, Anke; Kemfert, Claudia; Kromp, Wolfgang; Liebert, Wolfgang; Müschen, Klaus (16 October 2021). "Kernenergie und Klima". doi:10.5281/zenodo.5573718. {{cite journal}}: Cite journal requires |journal= (help)
  82. ^ a b c d "Hidden military implications of 'building back' with new nuclear in the UK" (PDF). Retrieved 24 November 2021.
  83. ^ "USGS Scientific Investigations Report 2012–5239: Critical Analysis of World Uranium Resources". pubs.usgs.gov. Retrieved 28 November 2021.
  84. ^ Barthel, F.H. (2007). "Thorium and unconventional uranium resources". {{cite journal}}: Cite journal requires |journal= (help)
  85. ^ Dungan, K.; Butler, G.; Livens, F. R.; Warren, L. M. (1 August 2017). "Uranium from seawater – Infinite resource or improbable aspiration?". Progress in Nuclear Energy. 99: 81–85. doi:10.1016/j.pnucene.2017.04.016. ISSN 0149-1970.
  86. ^ Fang, Jianchun; Lau, Chi Keung Marco; Lu, Zhou; Wu, Wanshan (1 September 2018). "Estimating Peak uranium production in China – Based on a Stella model". Energy Policy. 120: 250–258. doi:10.1016/j.enpol.2018.05.049. ISSN 0301-4215. S2CID 158066671.
  87. ^ a b Jewell, Jessica; Vetier, Marta; Garcia-Cabrera, Daniel (1 May 2019). "The international technological nuclear cooperation landscape: A new dataset and network analysis" (PDF). Energy Policy. 128: 838–852. doi:10.1016/j.enpol.2018.12.024. ISSN 0301-4215. S2CID 159233075.
  88. ^ a b Xing, Wanli; Wang, Anjian; Yan, Qiang; Chen, Shan (1 December 2017). "A study of China's uranium resources security issues: Based on analysis of China's nuclear power development trend". Annals of Nuclear Energy. 110: 1156–1164. doi:10.1016/j.anucene.2017.08.019. ISSN 0306-4549.
  89. ^ a b Yue, Qiang; He, Jingke; Stamford, Laurence; Azapagic, Adisa (2017). "Nuclear Power in China: An Analysis of the Current and Near-Future Uranium Flows". Energy Technology. 5 (5): 681–691. doi:10.1002/ente.201600444. ISSN 2194-4296.
  90. ^ Ferronsky, V.I.; Polyakov, V.A. (2012). Isotopes of the Earth's Hydrosphere. p. 399. ISBN 978-94-007-2856-1.
  91. ^ "Toxicological profile for thorium" (PDF). Agency for Toxic Substances and Disease Registry. 1990. p. 76. world average concentration in seawater is 0.05 μg/L (Harmsen and De Haan 1980)
  92. ^ Huh, C.A.; Bacon, M.P. (2002). "Determination of thorium concentration in seawater by neutron activation analysis". Analytical Chemistry. 57 (11): 2138–2142. doi:10.1021/ac00288a030.
  93. ^ a b Seko, Noriaki (July 29, 2013). "The current state of promising research into extraction of uranium from seawater – Utilization of Japan's plentiful seas". Global Energy Policy Research.
  94. ^ Wang, Taiping; Khangaonkar, Tarang; Long, Wen; Gill, Gary (2014). "Development of a Kelp-Type Structure Module in a Coastal Ocean Model to Assess the Hydrodynamic Impact of Seawater Uranium Extraction Technology". Journal of Marine Science and Engineering. 2: 81–92. doi:10.3390/jmse2010081.
  95. ^ Alexandratos SD, Kung S (April 20, 2016). "Uranium in Seawater". Industrial & Engineering Chemistry Research. 55 (15): 4101–4362. doi:10.1021/acs.iecr.6b01293.
  96. ^ a b c d Finck, Philip. (PDF). JAIF. Archived from the original (PDF) on 2012-04-12.
  97. ^ a b "Backgrounder on Radioactive Waste". NRC. Nuclear Regulatory Commission. Retrieved 20 April 2021.
  98. ^ "A fast reactor system to shorten the lifetime of long-lived fission products".
  99. ^ "Radioactivity : Minor Actinides". www.radioactivity.eu.com.
  100. ^ Ojovan, Michael I. (2014). An introduction to nuclear waste immobilisation, second edition (2nd ed.). Kidlington, Oxford, U.K.: Elsevier. ISBN 978-0-08-099392-8.
  101. ^ "High-level radioactive waste". nuclearsafety.gc.ca. Canadian Nuclear Safety Commission. February 3, 2014.
  102. ^ Hedin, A. (1997). "Spent nuclear fuel - how dangerous is it? A report from the project 'Description of risk'". U.S. Department of Energy Office of Scientific and Technical Information. {{cite journal}}: Cite journal requires |journal= (help)
  103. ^ Bruno, Jordi; Duro, Laura; Diaz-Maurin, François (2020). "Chapter 13 – Spent nuclear fuel and disposal". Advances in Nuclear Fuel Chemistry. Woodhead Publishing Series in Energy. Woodhead Publishing. pp. 527–553. doi:10.1016/B978-0-08-102571-0.00014-8. ISBN 9780081025710. S2CID 216544356.
  104. ^ Ojovan, M.I.; Lee, W.E. (2005). An Introduction to Nuclear Waste Immobilisation. Amsterdam: Elsevier Science Publishers. p. 315. ISBN 978-0-08-044462-8.
  105. ^ National Research Council (1995). Technical Bases for Yucca Mountain Standards. Washington, DC: National Academy Press. p. 91. ISBN 978-0-309-05289-4.
  106. ^ "The Status of Nuclear Waste Disposal". The American Physical Society. January 2006. Retrieved 2008-06-06.
  107. ^ "Public Health and Environmental Radiation Protection Standards for Yucca Mountain, Nevada; Proposed Rule" (PDF). United States Environmental Protection Agency. 2005-08-22. Retrieved 2008-06-06.
  108. ^ "CRS Report for Congress. Radioactive Waste Streams: Waste Classification for Disposal" (PDF). The Nuclear Waste Policy Act of 1982 (NWPA) defined irradiated fuel as spent nuclear fuel, and the byproducts as high-level waste.
  109. ^ Vandenbosch 2007, p. 21.
  110. ^ Duncan Clark (2012-07-09). "Nuclear waste-burning reactor moves a step closer to reality | Environment | guardian.co.uk". Guardian. London. Retrieved 2013-06-14.
  111. ^ George Monbiot. "A Waste of Waste". Monbiot.com. Retrieved 2013-06-14.
  112. ^ "Energy From Thorium: A Nuclear Waste Burning Liquid Salt Thorium Reactor". YouTube. 2009-07-23. Archived from the original on 2021-12-11. Retrieved 2013-06-14.
  113. ^ "Role of Thorium to Supplement Fuel Cycles of Future Nuclear Energy Systems" (PDF). IAEA. 2012. Retrieved 7 April 2021. Once irradiated in a reactor, the fuel of a thorium–uranium cycle contains an admixture of 232U (half-life 68.9 years) whose radioactive decay chain includes emitters (particularly 208Tl) of high energy gamma radiation (2.6 MeV). This makes spent thorium fuel treatment more difficult, requires remote handling/control during reprocessing and during further fuel fabrication, but on the other hand, may be considered as an additional non-proliferation barrier.
  114. ^ "NRC: Low-Level Waste". www.nrc.gov. Retrieved 28 August 2018.
  115. ^ "The Challenges of Nuclear Power".
  116. ^ "Coal Ash Is More Radioactive than Nuclear Waste". Scientific American. 2007-12-13.
  117. ^ Alex Gabbard (2008-02-05). . Oak Ridge National Laboratory. Archived from the original on February 5, 2007. Retrieved 2008-01-31.
  118. ^ . CE Journal. 2008-12-31. Archived from the original on 2009-08-27.
  119. ^ "Yankee Nuclear Power Plant". Yankeerowe.com. Retrieved 2013-06-22.
  120. ^ "Why nuclear energy". Generation Atomic. 26 January 2021.
  121. ^ "NPR Nuclear Waste May Get A Second Life". NPR.
  122. ^ "Energy Consumption of the United States - The Physics Factbook". hypertextbook.com.
  123. ^ "NRC: Dry Cask Storage". Nrc.gov. 2013-03-26. Retrieved 2013-06-22.
  124. ^ a b Montgomery, Scott L. (2010). The Powers That Be, University of Chicago Press, p. 137.
  125. ^ "international Journal of Environmental Studies, The Solutions for Nuclear waste, December 2005" (PDF). Retrieved 2013-06-22.
  126. ^ . U.S. Department of Energy Office of Civilian Radioactive Waste Management, Yucca Mountain Project, DOE/YMP-0010. November 2004. Archived from the original on 2009-08-25. Retrieved 2009-09-15.
  127. ^ a b Gore, Al (2009). Our Choice: A Plan to Solve the Climate Crisis. Emmaus, PA: Rodale. pp. 165–166. ISBN 978-1-59486-734-7.
  128. ^ Muller, Richard A.; Finsterle, Stefan; Grimsich, John; Baltzer, Rod; Muller, Elizabeth A.; Rector, James W.; Payer, Joe; Apps, John (May 29, 2019). "Disposal of High-Level Nuclear Waste in Deep Horizontal Drillholes". Energies. 12 (11): 2052. doi:10.3390/en12112052.
  129. ^ Mallants, Dirk; Travis, Karl; Chapman, Neil; Brady, Patrick V.; Griffiths, Hefin (February 14, 2020). "The State of the Science and Technology in Deep Borehole Disposal of Nuclear Waste". Energies. 13 (4): 833. doi:10.3390/en13040833.
  130. ^ "A Nuclear Power Renaissance?". Scientific American. 2008-04-28. Archived from the original on 2017-05-25. Retrieved 2008-05-15.
  131. ^ von Hippel, Frank N. (April 2008). "Nuclear Fuel Recycling: More Trouble Than It's Worth". Scientific American. Retrieved 2008-05-15.
  132. ^ "Licence granted for Finnish used fuel repository". World Nuclear News. 2015-11-12. Retrieved 2018-11-18.
  133. ^ Poinssot, Ch.; Bourg, S.; Ouvrier, N.; Combernoux, N.; Rostaing, C.; Vargas-Gonzalez, M.; Bruno, J. (May 2014). "Assessment of the environmental footprint of nuclear energy systems. Comparison between closed and open fuel cycles". Energy. 69: 199–211. doi:10.1016/j.energy.2014.02.069.
  134. ^ a b c R. Stephen Berry and George S. Tolley, Nuclear Fuel Reprocessing 2017-05-25 at the Wayback Machine, The University of Chicago, 2013.
  135. ^ Fairley, Peter (February 2007). "Nuclear Wasteland". IEEE Spectrum.
  136. ^ a b "Processing of Used Nuclear Fuel". World Nuclear Association. 2018. Retrieved 2018-12-26.
  137. ^ Campbell, D.O.; Gift, E.H. (1978). "Proliferation-resistant nuclear fuel cycles. [Spiking of plutonium with /sup 238/Pu]". doi:10.2172/6743129. OSTI 6743129. {{cite journal}}: Cite journal requires |journal= (help)
  138. ^ Fedorov, M.I.; Dyachenko, A.I.; Balagurov, N.A.; Artisyuk, V.V. (2015). "Formation of proliferation-resistant nuclear fuel supplies based on reprocessed uranium for Russian nuclear technologies recipient countries". Nuclear Energy and Technology. 1 (2): 111–116. doi:10.1016/j.nucet.2015.11.023.
  139. ^ Lloyd, Cody; Goddard, Braden (2018). "Proliferation resistant plutonium: An updated analysis". Nuclear Engineering and Design. 330: 297–302. doi:10.1016/j.nucengdes.2018.02.012.
  140. ^ a b Harold Feiveson; et al. (2011). "Managing nuclear spent fuel: Policy lessons from a 10-country study". Bulletin of the Atomic Scientists.
  141. ^ Kok, Kenneth D. (2010). Nuclear Engineering Handbook. CRC Press. p. 332. ISBN 978-1-4200-5391-3.
  142. ^ Emmanuel Jarry (6 May 2015). . Moneyweb. Reuters. Archived from the original on 23 July 2015. Retrieved 6 May 2015.
  143. ^ David, S. (2005). "Future Scenarios for Fission Based Reactors". Nuclear Physics A. 751: 429–441. Bibcode:2005NuPhA.751..429D. doi:10.1016/j.nuclphysa.2005.02.014.
  144. ^ Brundtland, Gro Harlem (20 March 1987). "Chapter 7: Energy: Choices for Environment and Development". Our Common Future: Report of the World Commission on Environment and Development. Oslo. Retrieved 27 March 2013. Today's primary sources of energy are mainly non-renewable: natural gas, oil, coal, peat, and conventional nuclear power. There are also renewable sources, including wood, plants, dung, falling water, geothermal sources, solar, tidal, wind, and wave energy, as well as human and animal muscle-power. Nuclear reactors that produce their own fuel ('breeders') and eventually fusion reactors are also in this category
  145. ^ John McCarthy (2006). . Progress and its Sustainability. Stanford. Archived from the original on 2007-04-10. Retrieved 2006-11-09. Citing: Cohen, Bernard L. (January 1983). "Breeder reactors: A renewable energy source". American Journal of Physics. 51 (1): 75–76. Bibcode:1983AmJPh..51...75C. doi:10.1119/1.13440. S2CID 119587950.
  146. ^ . Information and Issue Briefs. World Nuclear Association. 2006. Archived from the original on 2010-06-15. Retrieved 2006-11-09.
  147. ^ (PDF). World Energy Council. Archived from the original (PDF) on 2011-01-10.
  148. ^ Rebecca Kessler. "Are Fast-Breeder Reactors A Nuclear Power Panacea? by Fred Pearce: Yale Environment 360". E360.yale.edu. Retrieved 2013-06-14.
  149. ^ a b "Fast Neutron Reactors | FBR – World Nuclear Association". www.world-nuclear.org. Retrieved 7 October 2018.
  150. ^ "Prototype fast breeder reactor to be commissioned in two months: IGCAR director". The Times of India. Retrieved 28 August 2018.
  151. ^ . Hindustan Times. Archived from the original on 2013-04-26. Retrieved 2013-06-14.
  152. ^ a b c . Information and Issue Briefs. World Nuclear Association. 2006. Archived from the original on 2013-02-16. Retrieved 2006-11-09.
  153. ^ Invernizzi, Diletta Colette; Locatelli, Giorgio; Velenturf, Anne; Love, Peter ED.; Purnell, Phil; Brookes, Naomi J. (2020-09-01). "Developing policies for the end-of-life of energy infrastructure: Coming to terms with the challenges of decommissioning". Energy Policy. 144: 111677. doi:10.1016/j.enpol.2020.111677. ISSN 0301-4215.
  154. ^ "Decommissioning of nuclear installations". www.iaea.org. 17 October 2016. Retrieved 19 April 2021.
  155. ^ Invernizzi, Diletta Colette; Locatelli, Giorgio; Brookes, Naomi J. (2017-08-01). "How benchmarking can support the selection, planning and delivery of nuclear decommissioning projects" (PDF). Progress in Nuclear Energy. 99: 155–164. doi:10.1016/j.pnucene.2017.05.002.
  156. ^ "Backgrounder on Decommissioning Nuclear Power Plants". United States Nuclear Regulatory Commission. Retrieved 27 August 2021. Before a nuclear power plant begins operations, the licensee must establish or obtain a financial mechanism – such as a trust fund or a guarantee from its parent company – to ensure there will be sufficient money to pay for the ultimate decommissioning of the facility
  157. ^ "Share of electricity production from nuclear". Our World in Data. Retrieved 18 October 2020.
  158. ^ "Data & Statistics". International Energy Agency. Retrieved 2021-11-25.
  159. ^ "World gross electricity production by source, 2019 – Charts – Data & Statistics". International Energy Agency. Retrieved 2021-11-25.
  160. ^ "Steep decline in nuclear power would threaten energy security and climate goals". International Energy Agency. 2019-05-28. Retrieved 2019-07-08.
  161. ^ Armaroli, Nicola; Balzani, Vincenzo (2011). "Towards an electricity-powered world". Energy and Environmental Science. 4 (9): 3193–3222 [3200]. doi:10.1039/c1ee01249e. S2CID 1752800.
  162. ^ "REN 21. Renewables 2014 Global Status Report" (PDF).
  163. ^ Butler, Nick (3 September 2018). "The challenge for nuclear is to recover its competitive edge". Financial Times. Archived from the original on 2022-12-10. Retrieved 9 September 2018.
  164. ^ "World Nuclear Power Reactors & Uranium Requirements". World Nuclear Association. Retrieved 2022-04-18.
  165. ^ "What's the Lifespan for a Nuclear Reactor? Much Longer Than You Might Think". Energy.gov. Retrieved 2020-06-09.
  166. ^ "Under Construction Reactors". International Atomic Energy Agency. Retrieved 2019-12-15.
  167. ^ EU energy in figures. European Commission. 2020. p. 94. ISBN 9789276194439. Retrieved 2021-01-09.
  168. ^ Apt, Jay; Keith, David W.; Morgan, M. Granger (January 1, 1970). . Archived from the original on September 27, 2013.
  169. ^ (PDF). p. 6. Archived from the original (PDF) on 2014-02-11. Retrieved 2015-08-17.
  170. ^ . EngineersGarage. Archived from the original on 2013-10-04. Retrieved 2013-06-14.
  171. ^ Magdi Ragheb. (PDF). Archived from the original (PDF) on 2015-02-26. Retrieved 2015-06-04. As of 2001, about 235 naval reactors had been built
  172. ^ . Bellona. 2003-06-20. Archived from the original on October 15, 2007. Retrieved 2007-11-01.
  173. ^ Non-electric Applications of Nuclear Power: Seawater Desalination, Hydrogen Production and other Industrial Applications. International Atomic Energy Agency. 2007. ISBN 978-92-0-108808-6. Retrieved 21 August 2018.
  174. ^ What's behind the red-hot uranium boom. CNN, 19 April 2007
  175. ^ "Synapse Energy |". www.synapse-energy.com. Retrieved 2020-12-29.
  176. ^ Lovering, Jessica R.; Yip, Arthur; Nordhaus, Ted (2016). "Historical construction costs of global nuclear power reactors". Energy Policy. 91: 371–382. doi:10.1016/j.enpol.2016.01.011.
  177. ^ Ed Crooks (2010-09-12). "Nuclear: New dawn now seems limited to the east". Financial Times. Archived from the original on 2022-12-10. Retrieved 2010-09-12.
  178. ^ The Future of Nuclear Power. Massachusetts Institute of Technology. 2003. ISBN 978-0-615-12420-9. Retrieved 2006-11-10.
  179. ^ a b c "Projected Costs of Generating Electricity 2020". International Energy Agency & OECD Nuclear Energy Agency. Retrieved 12 December 2020.
  180. ^ Update of the MIT 2003 Future of Nuclear Power (PDF). Massachusetts Institute of Technology. 2009. Retrieved 21 August 2018.
  181. ^ "Splitting the cost". The Economist. 12 November 2009. Retrieved 21 August 2018.
  182. ^ "Nuclear power's reliability is dropping as extreme weather increases". Ars Technica. 24 July 2021. Retrieved 24 November 2021.
  183. ^ Ahmad, Ali (July 2021). "Increase in frequency of nuclear power outages due to changing climate". Nature Energy. 6 (7): 755–762. Bibcode:2021NatEn...6..755A. doi:10.1038/s41560-021-00849-y. ISSN 2058-7546. S2CID 237818619.
  184. ^ . Archived from the original on 2013-11-01. Retrieved 2019-08-05.
  185. ^ A. Lokhov. "Load-following with nuclear power plants" (PDF).
  186. ^ "Indian reactor breaks operating record". World Nuclear News. 25 October 2018.
  187. ^ "Indian-Designed Nuclear Reactor Breaks Record for Continuous Operation". POWER Magazine. 1 February 2019. Retrieved 28 March 2019.
  188. ^ a b Justin McCurry (30 January 2017). "Possible nuclear fuel find raises hopes of Fukushima plant breakthrough". The Guardian. Retrieved 3 February 2017.
  189. ^ Gardner, Timothy (13 September 2021). "Illinois approves $700 million in subsidies to Exelon, prevents nuclear plant closures". Reuters. Retrieved 28 November 2021.
  190. ^ a b "Europe faces €253bn nuclear waste bill". The Guardian. 4 April 2016. Retrieved 24 November 2021.
  191. ^ Wade, Will (14 June 2019). "Americans are paying more than ever to store deadly nuclear waste". Los Angeles Times. Retrieved 28 November 2021.
  192. ^ "The World Nuclear Waste Report 2019" (PDF). Retrieved 28 November 2021.
  193. ^ Energy Subsidies, World Nuclear Association, 2018.
  194. ^ a b c "Nuclear Reactors for Space - World Nuclear Association". world-nuclear.org. Retrieved 17 April 2021.
  195. ^ Patel, Prachi. "Nuclear-Powered Rockets Get a Second Look for Travel to Mars". IEEE Spectrum. Retrieved 17 April 2021.
  196. ^ a b Deitrich, L.W. "Basic principles of nuclear safety" (PDF). International Atomic Energy Agency. Retrieved 2018-11-18.
  197. ^ "Emergency core cooling systems (ECCS)". United States Nuclear Regulatory Commission. 2018-07-06. Retrieved 2018-12-10.
  198. ^ "What are the safest sources of energy?". Our World in Data. Retrieved 2020-05-27.
  199. ^ a b "Dr. MacKay Sustainable Energy without the hot air". Data from studies by the Paul Scherrer Institute including non EU data. p. 168. Retrieved 2012-09-15.
  200. ^ Brendan Nicholson (2006-06-05). "Nuclear power 'cheaper, safer' than coal and gas". The Age. Melbourne. Retrieved 2008-01-18.
  201. ^ a b Markandya, A.; Wilkinson, P. (2007). "Electricity generation and health". Lancet. 370 (9591): 979–990. doi:10.1016/S0140-6736(07)61253-7. PMID 17876910. S2CID 25504602. Nuclear power has lower electricity related health risks than Coal, Oil, & gas. ...the health burdens are appreciably smaller for generation from natural gas, and lower still for nuclear power. This study includes the latent or indirect fatalities, for example those caused by the inhalation of fossil fuel created particulate matter, smog induced cardiopulmonary events, black lung etc. in its comparison.
  202. ^ "Nuclear Power Prevents More Deaths Than It Causes | Chemical & Engineering News". Cen.acs.org. Retrieved 2014-01-24.
  203. ^ a b c Kharecha, Pushker A.; Hansen, James E. (2013). "Prevented Mortality and Greenhouse Gas Emissions from Historical and Projected Nuclear Power". Environmental Science & Technology. 47 (9): 4889–4895. Bibcode:2013EnST...47.4889K. doi:10.1021/es3051197. PMID 23495839.
  204. ^ Dennis Normile (2012-07-27). . Science. 337 (6093): 395. doi:10.1126/science.337.6093.395-b. Archived from the original on 2013-03-01.
  205. ^ Hasegawa, Arifumi; Tanigawa, Koichi; Ohtsuru, Akira; Yabe, Hirooki; Maeda, Masaharu; Shigemura, Jun; Ohira, Tetsuya; Tominaga, Takako; Akashi, Makoto; Hirohashi, Nobuyuki; Ishikawa, Tetsuo; Kamiya, Kenji; Shibuya, Kenji; Yamashita, Shunichi; Chhem, Rethy K (August 2015). "Health effects of radiation and other health problems in the aftermath of nuclear accidents, with an emphasis on Fukushima" (PDF). The Lancet. 386 (9992): 479–488. doi:10.1016/S0140-6736(15)61106-0. PMID 26251393. S2CID 19289052.
  206. ^ Andrew C. Revkin (2012-03-10). "Nuclear Risk and Fear, from Hiroshima to Fukushima". The New York Times.
  207. ^ Frank N. von Hippel (September–October 2011). "The radiological and psychological consequences of the Fukushima Daiichi accident". Bulletin of the Atomic Scientists. 67 (5): 27–36. Bibcode:2011BuAtS..67e..27V. doi:10.1177/0096340211421588. S2CID 218769799.
  208. ^ Tomoko Yamazaki & Shunichi Ozasa (2011-06-27). "Fukushima Retiree Leads Anti-Nuclear Shareholders at Tepco Annual Meeting". Bloomberg.
  209. ^ Mari Saito (2011-05-07). "Japan anti-nuclear protesters rally after PM call to close plant". Reuters.
  210. ^ IDO-19313: Additional Analysis of the SL-1 Excursion 2011-09-27 at the Wayback Machine Final Report of Progress July through October 1962, November 21, 1962, Flight Propulsion Laboratory Department, General Electric Company, Idaho Falls, Idaho, U.S. Atomic Energy Commission, Division of Technical Information.
  211. ^ McKeown, William (2003). Idaho Falls: The Untold Story of America's First Nuclear Accident. Toronto: ECW Press. ISBN 978-1-55022-562-4.
  212. ^ Johnston, Robert (2007-09-23). "Deadliest radiation accidents and other events causing radiation casualties". Database of Radiological Incidents and Related Events.
  213. ^ Richard Schiffman (2013-03-12). "Two years on, America hasn't learned lessons of Fukushima nuclear disaster". The Guardian. London.
  214. ^ Martin Fackler (2011-06-01). "Report Finds Japan Underestimated Tsunami Danger". The New York Times.
  215. ^ . Time.com. 2009-03-25. Archived from the original on March 28, 2009. Retrieved 2013-06-22.
  216. ^ Sovacool, B.K. (2008). "The costs of failure: A preliminary assessment of major energy accidents, 1907–2007". Energy Policy. 36 (5): 1802–1820. doi:10.1016/j.enpol.2008.01.040.
  217. ^ Burgherr, Peter; Hirschberg, Stefan (10 October 2008). "A Comparative Analysis of Accident Risks in Fossil, Hydro, and Nuclear Energy Chains". Human and Ecological Risk Assessment. 14 (5): 947–973. doi:10.1080/10807030802387556. S2CID 110522982.
  218. ^ "Chernobyl at 25th anniversary – Frequently Asked Questions" (PDF). World Health Organisation. 23 April 2011. Retrieved 14 April 2012.
  219. ^ . International Atomic Energy Agency. Archived from the original on 30 August 2013.
  220. ^ "UNSCEAR 2008 Report to the General Assembly, Annex D" (PDF). United Nations Scientific Committee on the Effects of Atomic Radiation. 2008.
  221. ^ "UNSCEAR 2008 Report to the General Assembly" (PDF). United Nations Scientific Committee on the Effects of Atomic Radiation. 2008.
  222. ^ "Publications: Vienna Convention on Civil Liability for Nuclear Damage". International Atomic Energy Agency. 27 August 2014.
  223. ^ "Nuclear Power's Role in Generating Electricity" (PDF). Congressional Budget Office. May 2008.
  224. ^ (PDF). 1999. Archived from the original (PDF) on 2016-01-08. Retrieved 2016-09-08.
  225. ^ a b Charles D. Ferguson & Frank A. Settle (2012). "The Future of Nuclear Power in the United States" (PDF). Federation of American Scientists.
  226. ^ "Nuclear Security – Five Years After 9/11". U.S. NRC. Retrieved 23 July 2007.
  227. ^ Matthew Bunn & Scott Sagan (2014). "A Worst Practices Guide to Insider Threats: Lessons from Past Mistakes". The American Academy of Arts & Sciences.
  228. ^ McFadden, Robert D. (1971-11-14). "Damage Is Put at Millions In Blaze at Con Ed Plant". The New York Times. ISSN 0362-4331. Retrieved 2020-01-15.
  229. ^ Knight, Michael (1972-01-30). "Mechanic Seized in Indian Pt. Fire". The New York Times. ISSN 0362-4331. Retrieved 2020-01-15.
  230. ^ a b c . 2008-10-23. Archived from the original on 2011-07-08. Retrieved 2012-09-15.
  231. ^ . usec.com. 2013-05-24. Archived from the original on 2013-06-21. Retrieved 2013-06-14.
  232. ^ a b Steven E. Miller & Scott D. Sagan (Fall 2009). "Nuclear power without nuclear proliferation?". Dædalus. 138 (4): 7. doi:10.1162/daed.2009.138.4.7. S2CID 57568427.
  233. ^ "Nuclear Power in the World Today". World-nuclear.org. Retrieved 2013-06-22.
  234. ^ . www.world-nuclear.org. World Nuclear Association. Archived from the original on 2013-07-01. Retrieved 2015-08-12.
  235. ^ Sovacool, Benjamin (2011). Contesting the Future of Nuclear Power: A Critical Global Assessment of Atomic Energy. Hackensack, NJ: World Scientific. p. 190. ISBN 978-981-4322-75-1.
  236. ^ . Usec.com. 2005-09-21. Archived from the original on 2013-04-26. Retrieved 2013-06-22.
  237. ^ a b Dawn Stover (2014-02-21). "More megatons to megawatts". The Bulletin.
  238. ^ Corley, Anne-Marie. "Against Long Odds, MIT's Thomas Neff Hatched a Plan to Turn Russian Warheads into American Electricity".
  239. ^ "Future Unclear For 'Megatons To Megawatts' Program". All Things Considered. NPR. 2009-12-05. Retrieved 2013-06-22.
  240. ^ "Life Cycle Assessment of Electricity Generation Options" (PDF). Retrieved 24 November 2021.
  241. ^ "Nuclear energy and water use in the columbia river basin" (PDF). Retrieved 24 November 2021.
  242. ^ a b c Ramana, M. V.; Ahmad, Ali (1 June 2016). "Wishful thinking and real problems: Small modular reactors, planning constraints, and nuclear power in Jordan". Energy Policy. 93: 236–245. doi:10.1016/j.enpol.2016.03.012. ISSN 0301-4215.
  243. ^ a b Kyne, Dean; Bolin, Bob (July 2016). "Emerging Environmental Justice Issues in Nuclear Power and Radioactive Contamination". International Journal of Environmental Research and Public Health. 13 (7): 700. doi:10.3390/ijerph13070700. PMC 4962241. PMID 27420080.
  244. ^ a b "Is nuclear power the answer to climate change?". World Information Service on Energy. Retrieved 1 February 2020.
  245. ^ a b c "World Nuclear Waste Report". Retrieved 25 October 2021.
  246. ^ a b Smith, Brice. "Insurmountable Risks: The Dangers of Using Nuclear Power to Combat Global Climate Change - Institute for Energy and Environmental Research". Retrieved 24 November 2021.
  247. ^ a b Prăvălie, Remus; Bandoc, Georgeta (1 March 2018). "Nuclear energy: Between global electricity demand, worldwide decarbonisation imperativeness, and planetary environmental implications". Journal of Environmental Management. 209: 81–92. doi:10.1016/j.jenvman.2017.12.043. ISSN 1095-8630. PMID 29287177.
  248. ^ Ahearne, John F. (2000). "Intergenerational Issues Regarding Nuclear Power, Nuclear Waste, and Nuclear Weapons". Risk Analysis. 20 (6): 763–770. doi:10.1111/0272-4332.206070. ISSN 1539-6924. PMID 11314726. S2CID 23395683.
  249. ^ a b "CoP 26 Statement | Don't nuke the Climate!". Retrieved 24 November 2021.
  250. ^ a b c "IPCC Working Group III – Mitigation of Climate Change, Annex III: Technology–specific cost and performance parameters" (PDF). IPCC. 2014. table A.III.2. Retrieved 2019-01-19.
  251. ^ National Renewable Energy Laboratory (NREL) (2013-01-24). . nrel.gov. Archived from the original on 2013-07-02. Retrieved 2013-06-22. Collectively, life cycle assessment literature shows that nuclear power is similar to other renewable and much lower than fossil fuel in total life cycle GHG emissions.
  252. ^ . NREL. Archived from the original on 2017-05-06. Retrieved 2016-09-08.
  253. ^ a b "IPCC Working Group III – Mitigation of Climate Change, Annex II Metrics & Methodology" (PDF). IPCC. 2014. section A.II.9.3. Retrieved 2019-01-19.
  254. ^ "World nuclear performance report 2021". World Nuclear Association.
  255. ^ a b "UNSCEAR 2008 Report to the General Assembly" (PDF). United Nations Scientific Committee on the Effects of Atomic Radiation. 2008.
  256. ^ "National Safety Council". Nsc.org. from the original on 12 October 2009. Retrieved 18 June 2013.
  257. ^ "Why did renewables become so cheap so fast?".
  258. ^ James J. MacKenzie (December 1977). "Review of The Nuclear Power Controversy by Arthur W. Murphy". The Quarterly Review of Biology. 52 (4): 467–468. doi:10.1086/410301. JSTOR 2823429.
  259. ^ . Bloomberg. Archived from the original on 2009-06-26. Retrieved 2017-03-10..
  260. ^ Patterson, Thom (2013-11-03). "Climate change warriors: It's time to go nuclear". CNN.
  261. ^ "Renewable Energy and Electricity". World Nuclear Association. June 2010. Retrieved 2010-07-04.
  262. ^ "Climate". Retrieved 18 February 2022.
  263. ^ "Radioactive Waste Management". February 2022.
  264. ^ M. King Hubbert (June 1956). (PDF). API. p. 36. Archived from the original (PDF) on 2008-05-27. Retrieved 2008-04-18.
  265. ^ Bennett, James E.; Tamura-Wicks, Helen; Parks, Robbie M.; Burnett, Richard T.; Pope, C. Arden; Bechle, Matthew J.; Marshall, Julian D.; Danaei, Goodarz; Ezzati, Majid (23 July 2019). "Particulate matter air pollution and national and county life expectancy loss in the USA: A spatiotemporal analysis". PLOS Medicine. 16 (7): e1002856. doi:10.1371/journal.pmed.1002856. PMC 6650052. PMID 31335874.
  266. ^ "Nuclear Power and Energy Independence". 22 October 2008.
  267. ^ "Climate". Retrieved 18 February 2022.
  268. ^ Spencer R. Weart (2012). The Rise of Nuclear Fear. Harvard University Press.
  269. ^ Sturgis, Sue. . Institute for Southern Studies. Archived from the original on 2010-04-18. Retrieved 2010-08-24.
  270. ^ (PDF). Greenpeace International and European Renewable Energy Council. January 2007. p. 7. Archived from the original (PDF) on 2009-08-06. Retrieved 2010-02-28.
  271. ^ Giugni, Marco (2004). Social protest and policy change : ecology, antinuclear, and peace movements in comparative perspective. Lanham: Rowman & Littlefield. p. 44. ISBN 978-0742518261.
  272. ^ Sovacool Benjamin K. (2008). "The costs of failure: A preliminary assessment of major energy accidents, 1907–2007". Energy Policy. 36 (5): 1802–1820. doi:10.1016/j.enpol.2008.01.040.
  273. ^ Cooke, Stephanie (2009). In Mortal Hands: A Cautionary History of the Nuclear Age. New York: Bloomsbury. p. 280. ISBN 978-1-59691-617-3.
  274. ^ Rodriguez, C.; Baxter, A.; McEachern, D.; Fikani, M.; Venneri, F. (1 June 2003). "Deep-Burn: making nuclear waste transmutation practical". Nuclear Engineering and Design. 222 (2): 299–317. doi:10.1016/S0029-5493(03)00034-7. ISSN 0029-5493.
  275. ^ Geissmann, Thomas; Ponta, Oriana (1 April 2017). "A probabilistic approach to the computation of the levelized cost of electricity". Energy. 124: 372–381. doi:10.1016/j.energy.2017.02.078. ISSN 0360-5442.
  276. ^ a b c Ramana, M. V.; Mian, Zia (1 June 2014). "One size doesn't fit all: Social priorities and technical conflicts for small modular reactors". Energy Research & Social Science. 2: 115–124. doi:10.1016/j.erss.2014.04.015. ISSN 2214-6296.
  277. ^ Meckling, Jonas (1 March 2019). "Governing renewables: Policy feedback in a global energy transition". Environment and Planning C: Politics and Space. 37 (2): 317–338. doi:10.1177/2399654418777765. ISSN 2399-6544. S2CID 169975439.
  278. ^ Decommissioning a Nuclear Power Plant, 2007-4-20, U.S. Nuclear Regulatory Commission, Retrieved 2007-6-12
  279. ^ . World-nuclear-news.org. 2007-04-26. Archived from the original on 2010-08-23. Retrieved 2015-11-01.
  280. ^ Wealer, B.; Bauer, S.; Hirschhausen, C. v.; Kemfert, C.; Göke, L. (1 June 2021). "Investing into third generation nuclear power plants - Review of recent trends and analysis of future investments using Monte Carlo Simulation". Renewable and Sustainable Energy Reviews. 143: 110836. doi:10.1016/j.rser.2021.110836. ISSN 1364-0321.
nuclear, power, atomic, power, redirects, here, film, atomic, power, film, countries, with, power, ability, project, nuclear, weapons, list, states, with, nuclear, weapons, nuclear, reactions, produce, electricity, obtained, from, nuclear, fission, nuclear, de. Atomic power redirects here For the film see Atomic Power film For countries with the power or ability to project nuclear weapons see List of states with nuclear weapons Nuclear power is the use of nuclear reactions to produce electricity Nuclear power can be obtained from nuclear fission nuclear decay and nuclear fusion reactions Presently the vast majority of electricity from nuclear power is produced by nuclear fission of uranium and plutonium in nuclear power plants Nuclear decay processes are used in niche applications such as radioisotope thermoelectric generators in some space probes such as Voyager 2 Generating electricity from fusion power remains the focus of international research The Leibstadt Nuclear Power Plant in Switzerland Growth of worldwide nuclear power generation Most nuclear power plants use thermal reactors with enriched uranium in a once through fuel cycle Fuel is removed when the percentage of neutron absorbing atoms becomes so large that a chain reaction can no longer be sustained typically three years It is then cooled for several years in on site spent fuel pools before being transferred to long term storage The spent fuel though low in volume is high level radioactive waste While its radioactivity decreases exponentially it must be isolated from the biosphere for hundreds of thousands of years though newer technologies like fast reactors have the potential to reduce this significantly Because the spent fuel is still mostly fissionable material some countries e g France and Russia reprocess their spent fuel by extracting fissile and fertile elements for fabrication in new fuel although this process is more expensive than producing new fuel from mined uranium All reactors breed some plutonium 239 which is found in the spent fuel and because Pu 239 is the preferred material for nuclear weapons reprocessing is seen as a weapon proliferation risk The first nuclear power plant was built in the 1950s The global installed nuclear capacity grew to 100 GW in the late 1970s and then expanded rapidly during the 1980s reaching 300 GW by 1990 The 1979 Three Mile Island accident in the United States and the 1986 Chernobyl disaster in the Soviet Union resulted in increased regulation and public opposition to nuclear plants These factors along with high cost of construction resulted in the global installed capacity only increasing to 390 GW by 2022 These plants supplied 2 586 terawatt hours TWh of electricity in 2019 equivalent to about 10 of global electricity generation and were the second largest low carbon power source after hydroelectricity As of September 2022 update there are 437 civilian fission reactors in the world with overall capacity of 393 GW 1 57 under construction and 102 planned with a combined capacity of 62 GW and 96 GW respectively The United States has the largest fleet of nuclear reactors generating over 800 TWh of zero emissions electricity per year with an average capacity factor of 92 Average global capacity factor is 89 1 Most new reactors under construction are generation III reactors in Asia Nuclear power generation causes one of the lowest levels of fatalities per unit of energy generated compared to other energy sources Coal petroleum natural gas and hydroelectricity each have caused more fatalities per unit of energy due to air pollution and accidents Nuclear power plants emit no greenhouse gases One of the dangers of nuclear power is the potential for accidents like the Fukushima nuclear disaster in Japan in 2011 There is a debate about nuclear power Proponents contend that nuclear power is a safe sustainable energy source that reduces carbon emissions The anti nuclear movement contends that nuclear power poses many threats to people and the environment and is too expensive and slow to deploy when compared to alternative sustainable energy sources Contents 1 History 1 1 Origins 1 2 First power generation 1 3 Expansion and first opposition 1 4 Chernobyl and renaissance 1 5 Fukushima 1 6 Current prospects 2 Power plants 3 Fuel cycle 3 1 Uranium resources 3 2 Waste 3 2 1 High level waste 3 2 2 Low level waste 3 2 3 Waste relative to other types 3 2 4 Waste disposal 3 3 Reprocessing 3 4 Breeding 4 Decommissioning 5 Production 6 Economics 7 Use in space 8 Safety 8 1 Accidents 8 2 Attacks and sabotage 9 Proliferation 10 Environmental impact 10 1 Carbon emissions 10 2 Radiation 11 Debate 11 1 Comparison with renewable energy 11 1 1 Speed of transition and investment needed 11 1 2 Land use 12 Research 12 1 Advanced fission reactor designs 12 2 Hybrid fusion fission 12 3 Fusion 13 See also 14 References 15 Further reading 16 External linksHistoryMain article History of nuclear power Origins The first light bulbs ever lit by electricity generated by nuclear power at EBR 1 at Argonne National Laboratory West December 20 1951 2 The discovery of nuclear fission occurred in 1938 following over four decades of work on the science of radioactivity and the elaboration of new nuclear physics that described the components of atoms Soon after the discovery of the fission process it was realized that a fissioning nucleus can induce further nucleus fissions thus inducing a self sustaining chain reaction 3 Once this was experimentally confirmed in 1939 scientists in many countries petitioned their governments for support of nuclear fission research just on the cusp of World War II for the development of a nuclear weapon 4 In the United States these research efforts led to the creation of the first man made nuclear reactor the Chicago Pile 1 which achieved criticality on December 2 1942 The reactor s development was part of the Manhattan Project the Allied effort to create atomic bombs during World War II It led to the building of larger single purpose production reactors for the production of weapons grade plutonium for use in the first nuclear weapons The United States tested the first nuclear weapon in July 1945 the Trinity test with the atomic bombings of Hiroshima and Nagasaki taking place one month later The launching ceremony of the USS Nautilus January 1954 In 1958 it would become the first vessel to reach the North Pole 5 The Calder Hall nuclear power station in the United Kingdom the world s first commercial nuclear power station Despite the military nature of the first nuclear devices the 1940s and 1950s were characterized by strong optimism for the potential of nuclear power to provide cheap and endless energy 6 Electricity was generated for the first time by a nuclear reactor on December 20 1951 at the EBR I experimental station near Arco Idaho which initially produced about 100 kW 7 8 In 1953 American President Dwight Eisenhower gave his Atoms for Peace speech at the United Nations emphasizing the need to develop peaceful uses of nuclear power quickly This was followed by the Atomic Energy Act of 1954 which allowed rapid declassification of U S reactor technology and encouraged development by the private sector First power generation The first organization to develop practical nuclear power was the U S Navy with the S1W reactor for the purpose of propelling submarines and aircraft carriers The first nuclear powered submarine USS Nautilus was put to sea in January 1954 9 10 The S1W reactor was a pressurized water reactor This design was chosen because it was simpler more compact and easier to operate compared to alternative designs thus more suitable to be used in submarines This decision would result in the PWR being the reactor of choice also for power generation thus having a lasting impact on the civilian electricity market in the years to come 11 On June 27 1954 the Obninsk Nuclear Power Plant in the USSR became the world s first nuclear power plant to generate electricity for a power grid producing around 5 megawatts of electric power 12 The world s first commercial nuclear power station Calder Hall at Windscale England was connected to the national power grid on 27 August 1956 In common with a number of other generation I reactors the plant had the dual purpose of producing electricity and plutonium 239 the latter for the nascent nuclear weapons program in Britain 13 Expansion and first opposition The total global installed nuclear capacity initially rose relatively quickly rising from less than 1 gigawatt GW in 1960 to 100 GW in the late 1970s 9 During the 1970s and 1980s rising economic costs related to extended construction times largely due to regulatory changes and pressure group litigation 14 and falling fossil fuel prices made nuclear power plants then under construction less attractive In the 1980s in the U S and 1990s in Europe the flat electric grid growth and electricity liberalization also made the addition of large new baseload energy generators economically unattractive The 1973 oil crisis had a significant effect on countries such as France and Japan which had relied more heavily on oil for electric generation to invest in nuclear power 15 France would construct 25 nuclear power plants over the next 15 years 16 17 and as of 2019 71 of French electricity was generated by nuclear power the highest percentage by any nation in the world 18 Some local opposition to nuclear power emerged in the United States in the early 1960s 19 In the late 1960s some members of the scientific community began to express pointed concerns 20 These anti nuclear concerns related to nuclear accidents nuclear proliferation nuclear terrorism and radioactive waste disposal 21 In the early 1970s there were large protests about a proposed nuclear power plant in Wyhl Germany The project was cancelled in 1975 The anti nuclear success at Wyhl inspired opposition to nuclear power in other parts of Europe and North America 22 23 By the mid 1970s anti nuclear activism gained a wider appeal and influence and nuclear power began to become an issue of major public protest 24 25 In some countries the nuclear power conflict reached an intensity unprecedented in the history of technology controversies 26 27 The increased public hostility to nuclear power led to a longer license procurement process regulations and increased requirements for safety equipment which made new construction much more expensive 28 29 In the United States over 120 LWR reactor proposals were ultimately cancelled 30 and the construction of new reactors ground to a halt 31 The 1979 accident at Three Mile Island with no fatalities played a major part in the reduction in the number of new plant constructions in many countries 20 Chernobyl and renaissance The town of Pripyat abandoned since 1986 with the Chernobyl plant and the Chernobyl New Safe Confinement arch in the distance Olkiluoto 3 under construction in 2009 It was the first EPR a modernized PWR design to start construction During the 1980s one new nuclear reactor started up every 17 days on average 32 By the end of the decade global installed nuclear capacity reached 300 GW Since the late 1980s new capacity additions slowed down significantly with the installed nuclear capacity reaching 366 GW in 2005 The 1986 Chernobyl disaster in the USSR involving an RBMK reactor altered the development of nuclear power and led to a greater focus on meeting international safety and regulatory standards 33 It is considered the worst nuclear disaster in history both in total casualties with 56 direct deaths and financially with the cleanup and the cost estimated at 18 billion Rbls US 68 billion in 2019 adjusted for inflation 34 35 The international organization to promote safety awareness and the professional development of operators in nuclear facilities the World Association of Nuclear Operators WANO was created as a direct outcome of the 1986 Chernobyl accident The Chernobyl disaster played a major part in the reduction in the number of new plant constructions in the following years 20 Influenced by these events Italy voted against nuclear power in a 1987 referendum becoming the first country to completely phase out nuclear power in 1990 In the early 2000s nuclear energy was expecting a nuclear renaissance an increase in the construction of new reactors due to concerns about carbon dioxide emissions 36 During this period newer generation III reactors such as the EPR began construction Net electrical generation by source and growth from 1980 In terms of energy generated between 1980 and 2010 the contribution from fission grew the fastest Electricity production in France showing the shift to nuclear power thermofossil hydroelectric nuclear Other renewables The rate of new reactor constructions essentially halted in the late 1980s Increased capacity factor in existing reactors was primarily responsible for the continuing increase in electrical energy produced during this period Electricity generation trends in the top producing countries Our World in Data Fukushima Nuclear power generation TWh and operational nuclear reactors since 1997 37 Prospects of a nuclear renaissance were delayed by another nuclear accident 36 38 The 2011 Fukushima Daiichi nuclear accident was caused by a large tsunami triggered by the Tōhoku earthquake one of the largest earthquakes ever recorded The Fukushima Daiichi Nuclear Power Plant suffered three core meltdowns due to failure of the emergency cooling system for lack of electricity supply This resulted in the most serious nuclear accident since the Chernobyl disaster The accident prompted a re examination of nuclear safety and nuclear energy policy in many countries 39 Germany approved plans to close all its reactors by 2022 and many other countries reviewed their nuclear power programs 40 41 42 43 Following the disaster Japan shut down all of its nuclear power reactors some of them permanently and in 2015 began a gradual process to restart the remaining 40 reactors following safety checks and based on revised criteria for operations and public approval 44 In 2022 the Japanese government under the leadership of Prime Minister Fumio Kishida has declared that 10 more nuclear power plants be reopened since the 2011 disaster 45 Kishida is also pushing for research and construction of new safer nuclear plants to safeguard Japanese consumers from the fluctuating fossil fuel market and reduce Japan s greenhouse gas emissions 46 Prime Minister Kishida intends to have Japan become a significant exporter of nuclear energy and technology to developing countries around the world 46 Current prospects By 2015 the IAEA s outlook for nuclear energy had become more promising recognizing the importance of low carbon generation for mitigating climate change 47 As of 2015 update the global trend was for new nuclear power stations coming online to be balanced by the number of old plants being retired 48 In 2016 the U S Energy Information Administration projected for its base case that world nuclear power generation would increase from 2 344 terawatt hours TWh in 2012 to 4 500 TWh in 2040 Most of the predicted increase was expected to be in Asia 49 As of 2018 there are over 150 nuclear reactors planned including 50 under construction 50 In January 2019 China had 45 reactors in operation 13 under construction and plans to build 43 more which would make it the world s largest generator of nuclear electricity 51 As of 2021 17 reactors were reported to be under construction China built significantly fewer reactors than originally planned its share of electricity from nuclear power was 5 in 2019 52 and observers have cautioned that along with the risks the changing economics of energy generation may cause new nuclear energy plants to no longer make sense in a world that is leaning toward cheaper more reliable renewable energy 53 54 In October 2021 the Japanese cabinet approved the new Plan for Electricity Generation to 2030 prepared by the Agency for Natural Resources and Energy ANRE and an advisory committee following public consultation The nuclear target for 2030 requires the restart of another ten reactors Prime Minister Fumio Kishida in July 2022 announced that the country should consider building advanced reactors and extending operating licences beyond 60 years 55 As of 2022 with world oil and gas prices on the rise while Germany is restarting its coal plants to deal with loss of Russian gas that it needs to supplement its Energiwende 56 many other countries have announced ambitious plans to reinvigorate ageing nuclear generating capacity with new investments French President Emmanuel Macron announced his intention to build six new reactors in coming decades placing nuclear at the heart of France s drive for carbon neutrality by 2050 57 Power plants source source source source source source source source source source track track track track An animation of a pressurized water reactor in operation Number of electricity generating civilian reactors by type as of 2014 58 PWR BWR GCR PHWR LWGR FBR Main articles Nuclear power plant and Nuclear reactor See also List of commercial nuclear reactors and List of nuclear power stations Nuclear power plants are thermal power stations that generate electricity by harnessing the thermal energy released from nuclear fission A fission nuclear power plant is generally composed of a nuclear reactor in which the nuclear reactions generating heat take place a cooling system which removes the heat from inside the reactor a steam turbine which transforms the heat into mechanical energy an electric generator which transforms the mechanical energy into electrical energy 59 When a neutron hits the nucleus of a uranium 235 or plutonium atom it can split the nucleus into two smaller nuclei which is a nuclear fission reaction The reaction releases energy and neutrons The released neutrons can hit other uranium or plutonium nuclei causing new fission reactions which release more energy and more neutrons This is called a chain reaction In most commercial reactors the reaction rate is contained by control rods that absorb excess neutrons The controllability of nuclear reactors depends on the fact that a small fraction of neutrons resulting from fission are delayed The time delay between the fission and the release of the neutrons slows down changes in reaction rates and gives time for moving the control rods to adjust the reaction rate 59 60 Fuel cycle The nuclear fuel cycle begins when uranium is mined enriched and manufactured into nuclear fuel 1 which is delivered to a nuclear power plant After use the spent fuel is delivered to a reprocessing plant 2 or to a final repository 3 In nuclear reprocessing 95 of spent fuel can potentially be recycled to be returned to use in a power plant 4 Main articles Nuclear fuel cycle and Integrated Nuclear Fuel Cycle Information System The life cycle of nuclear fuel starts with uranium mining The uranium ore is then converted into a compact ore concentrate form known as yellowcake U3O8 to facilitate transport 61 Fission reactors generally need uranium 235 a fissile isotope of uranium The concentration of uranium 235 in natural uranium is very low about 0 7 Some reactors can use this natural uranium as fuel depending on their neutron economy These reactors generally have graphite or heavy water moderators For light water reactors the most common type of reactor this concentration is too low and it must be increased by a process called uranium enrichment 61 In civilian light water reactors uranium is typically enriched to 3 5 5 uranium 235 62 The uranium is then generally converted into uranium oxide UO2 a ceramic that is then compressively sintered into fuel pellets a stack of which forms fuel rods of the proper composition and geometry for the particular reactor 62 After some time in the reactor the fuel will have reduced fissile material and increased fission products until its use becomes impractical 62 At this point the spent fuel will be moved to a spent fuel pool which provides cooling for the thermal heat and shielding for ionizing radiation After several months or years the spent fuel is radioactively and thermally cool enough to be moved to dry storage casks or reprocessed 62 Uranium resources Main articles Uranium market Uranium mining and Energy development Nuclear Proportions of the isotopes uranium 238 blue and uranium 235 red found in natural uranium and in enriched uranium for different applications Light water reactors use 3 5 enriched uranium while CANDU reactors work with natural uranium Uranium is a fairly common element in the Earth s crust it is approximately as common as tin or germanium and is about 40 times more common than silver 63 Uranium is present in trace concentrations in most rocks dirt and ocean water but is generally economically extracted only where it is present in high concentrations Uranium mining can be underground open pit or in situ leach mining An increasing number of the highest output mines are remote underground operations such as McArthur River uranium mine in Canada which by itself accounts for 13 of global production As of 2011 the world s known resources of uranium economically recoverable at the arbitrary price ceiling of US 130 kg were enough to last for between 70 and 100 years 64 65 66 In 2007 the OECD estimated 670 years of economically recoverable uranium in total conventional resources and phosphate ores assuming the then current use rate 67 Light water reactors make relatively inefficient use of nuclear fuel mostly using only the very rare uranium 235 isotope 68 Nuclear reprocessing can make this waste reusable and newer reactors also achieve a more efficient use of the available resources than older ones 68 With a pure fast reactor fuel cycle with a burn up of all the uranium and actinides which presently make up the most hazardous substances in nuclear waste there is an estimated 160 000 years worth of uranium in total conventional resources and phosphate ore at the price of 60 100 US kg 69 However reprocessing is expensive possibly dangerous and can be used to manufacture nuclear weapons 70 71 72 73 74 One analysis found that for uranium prices could increase by two orders of magnitudes between 2035 and 2100 and that there could be a shortage near the end of the century 75 A 2017 study by researchers from MIT and WHOI found that at the current consumption rate global conventional reserves of terrestrial uranium approximately 7 6 million tonnes could be depleted in a little over a century 76 Limited uranium 235 supply may inhibit substantial expansion with the current nuclear technology 77 While various ways to reduce dependence on such resources are being explored 78 79 80 new nuclear technologies are considered to not be available in time for climate change mitigation purposes or competition with alternatives of renewables in addition to being more expensive and require costly research and development 77 81 82 A study found it to be uncertain whether identified resources will be developed quickly enough to provide uninterrupted fuel supply to expanded nuclear facilities 83 and various forms of mining may be challenged by ecological barriers costs and land requirements 84 85 Researchers also report considerable import dependence of nuclear energy 86 87 88 89 Unconventional uranium resources also exist Uranium is naturally present in seawater at a concentration of about 3 micrograms per liter 90 91 92 with 4 4 billion tons of uranium considered present in seawater at any time 93 In 2014 it was suggested that it would be economically competitive to produce nuclear fuel from seawater if the process was implemented at large scale 94 Like fossil fuels over geological timescales uranium extracted on an industrial scale from seawater would be replenished by both river erosion of rocks and the natural process of uranium dissolved from the surface area of the ocean floor both of which maintain the solubility equilibria of seawater concentration at a stable level 93 Some commentators have argued that this strengthens the case for nuclear power to be considered a renewable energy 95 Waste Main article Nuclear waste Typical composition of uranium dioxide fuel before and after approximately three years in the once through nuclear fuel cycle of a LWR 96 The normal operation of nuclear power plants and facilities produce radioactive waste or nuclear waste This type of waste is also produced during plant decommissioning There are two broad categories of nuclear waste low level waste and high level waste 97 The first has low radioactivity and includes contaminated items such as clothing which poses limited threat High level waste is mainly the spent fuel from nuclear reactors which is very radioactive and must be cooled and then safely disposed of or reprocessed 97 High level waste Main articles High level waste and Spent nuclear fuel Activity of spent UOx fuel in comparison to the activity of natural uranium ore over time 98 96 Dry cask storage vessels storing spent nuclear fuel assemblies The most important waste stream from nuclear power reactors is spent nuclear fuel which is considered high level waste For LWRs spent fuel is typically composed of 95 uranium 4 fission products and about 1 transuranic actinides mostly plutonium neptunium and americium 99 The fission products are responsible for the bulk of the short term radioactivity whereas the plutonium and other transuranics are responsible for the bulk of the long term radioactivity 100 High level waste HLW must be stored isolated from the biosphere with sufficient shielding so as to limit radiation exposure After being removed from the reactors used fuel bundles are stored for six to ten years in spent fuel pools which provide cooling and shielding against radiation After that the fuel is cool enough that it can be safely transferred to dry cask storage 101 The radioactivity decreases exponentially with time such that it will have decreased by 99 5 after 100 years 102 The more intensely radioactive short lived fission products SLFPs decay into stable elements in approximately 300 years and after about 100 000 years the spent fuel becomes less radioactive than natural uranium ore 96 103 Commonly suggested methods to isolate LLFP waste from the biosphere include separation and transmutation 96 synroc treatments or deep geological storage 104 105 106 107 Thermal neutron reactors which presently constitute the majority of the world fleet cannot burn up the reactor grade plutonium that is generated during the reactor operation This limits the life of nuclear fuel to a few years In some countries such as the United States spent fuel is classified in its entirety as a nuclear waste 108 In other countries such as France it is largely reprocessed to produce a partially recycled fuel known as mixed oxide fuel or MOX For spent fuel that does not undergo reprocessing the most concerning isotopes are the medium lived transuranic elements which are led by reactor grade plutonium half life 24 000 years 109 Some proposed reactor designs such as the integral fast reactor and molten salt reactors can use as fuel the plutonium and other actinides in spent fuel from light water reactors thanks to their fast fission spectrum This offers a potentially more attractive alternative to deep geological disposal 110 111 112 The thorium fuel cycle results in similar fission products though creates a much smaller proportion of transuranic elements from neutron capture events within a reactor Spent thorium fuel although more difficult to handle than spent uranium fuel may present somewhat lower proliferation risks 113 Low level waste Main article Low level waste The nuclear industry also produces a large volume of low level waste with low radioactivity in the form of contaminated items like clothing hand tools water purifier resins and upon decommissioning the materials of which the reactor itself is built Low level waste can be stored on site until radiation levels are low enough to be disposed of as ordinary waste or it can be sent to a low level waste disposal site 114 Waste relative to other types See also Radioactive waste Naturally occurring radioactive material In countries with nuclear power radioactive wastes account for less than 1 of total industrial toxic wastes much of which remains hazardous for long periods 68 Overall nuclear power produces far less waste material by volume than fossil fuel based power plants 115 Coal burning plants in particular produce large amounts of toxic and mildly radioactive ash resulting from the concentration of naturally occurring radioactive materials in coal 116 A 2008 report from Oak Ridge National Laboratory concluded that coal power actually results in more radioactivity being released into the environment than nuclear power operation and that the population effective dose equivalent from radiation from coal plants is 100 times that from the operation of nuclear plants 117 Although coal ash is much less radioactive than spent nuclear fuel by weight coal ash is produced in much higher quantities per unit of energy generated It is also released directly into the environment as fly ash whereas nuclear plants use shielding to protect the environment from radioactive materials 118 Nuclear waste volume is small compared to the energy produced For example at Yankee Rowe Nuclear Power Station which generated 44 billion kilowatt hours of electricity when in service its complete spent fuel inventory is contained within sixteen casks 119 It is estimated that to produce a lifetime supply of energy for a person at a western standard of living approximately 3 GWh would require on the order of the volume of a soda can of low enriched uranium resulting in a similar volume of spent fuel generated 120 121 122 Waste disposal See also List of radioactive waste treatment technologies Nuclear waste flasks generated by the United States during the Cold War are stored underground at the Waste Isolation Pilot Plant WIPP in New Mexico The facility is seen as a potential demonstration for storing spent fuel from civilian reactors Following interim storage in a spent fuel pool the bundles of used fuel rod assemblies of a typical nuclear power station are often stored on site in dry cask storage vessels 123 Presently waste is mainly stored at individual reactor sites and there are over 430 locations around the world where radioactive material continues to accumulate Disposal of nuclear waste is often considered the most politically divisive aspect in the lifecycle of a nuclear power facility 124 With the lack of movement of nuclear waste in the 2 billion year old natural nuclear fission reactors in Oklo Gabon being cited as a source of essential information today 125 126 Experts suggest that centralized underground repositories which are well managed guarded and monitored would be a vast improvement 124 There is an international consensus on the advisability of storing nuclear waste in deep geological repositories 127 With the advent of new technologies other methods including horizontal drillhole disposal into geologically inactive areas have been proposed 128 129 Most waste packaging small scale experimental fuel recycling chemistry and radiopharmaceutical refinement is conducted within remote handled hot cells There are no commercial scale purpose built underground high level waste repositories in operation 127 130 131 However in Finland the Onkalo spent nuclear fuel repository of the Olkiluoto Nuclear Power Plant is under construction as of 2015 132 Reprocessing Main article Nuclear reprocessing See also Plutonium Management and Disposition Agreement Most thermal neutron reactors run on a once through nuclear fuel cycle mainly due to the low price of fresh uranium However many reactors are also fueled with recycled fissionable materials that remain in spent nuclear fuel The most common fissionable material that is recycled is the reactor grade plutonium RGPu that is extracted from spent fuel it is mixed with uranium oxide and fabricated into mixed oxide or MOX fuel Because thermal LWRs remain the most common reactor worldwide this type of recycling is the most common It is considered to increase the sustainability of the nuclear fuel cycle reduce the attractiveness of spent fuel to theft and lower the volume of high level nuclear waste 133 Spent MOX fuel cannot generally be recycled for use in thermal neutron reactors This issue does not affect fast neutron reactors which are therefore preferred in order to achieve the full energy potential of the original uranium 134 135 The main constituent of spent fuel from LWRs is slightly enriched uranium This can be recycled into reprocessed uranium RepU which can be used in a fast reactor used directly as fuel in CANDU reactors or re enriched for another cycle through an LWR Re enriching of reprocessed uranium is common in France and Russia 136 Reprocessed uranium is also safer in terms of nuclear proliferation potential 137 138 139 Reprocessing has the potential to recover up to 95 of the uranium and plutonium fuel in spent nuclear fuel as well as reduce long term radioactivity within the remaining waste However reprocessing has been politically controversial because of the potential for nuclear proliferation and varied perceptions of increasing the vulnerability to nuclear terrorism 134 140 Reprocessing also leads to higher fuel cost compared to the once through fuel cycle 134 140 While reprocessing reduces the volume of high level waste it does not reduce the fission products that are the primary causes of residual heat generation and radioactivity for the first few centuries outside the reactor Thus reprocessed waste still requires an almost identical treatment for the initial first few hundred years Reprocessing of civilian fuel from power reactors is currently done in France the United Kingdom Russia Japan and India In the United States spent nuclear fuel is currently not reprocessed 136 The La Hague reprocessing facility in France has operated commercially since 1976 and is responsible for half the world s reprocessing as of 2010 141 It produces MOX fuel from spent fuel derived from several countries More than 32 000 tonnes of spent fuel had been reprocessed as of 2015 with the majority from France 17 from Germany and 9 from Japan 142 Breeding Nuclear fuel assemblies being inspected before entering a pressurized water reactor in the United States Main articles Breeder reactor and Nuclear power proposed as renewable energy Breeding is the process of converting non fissile material into fissile material that can be used as nuclear fuel The non fissile material that can be used for this process is called fertile material and constitute the vast majority of current nuclear waste This breeding process occurs naturally in breeder reactors As opposed to light water thermal neutron reactors which use uranium 235 0 7 of all natural uranium fast neutron breeder reactors use uranium 238 99 3 of all natural uranium or thorium A number of fuel cycles and breeder reactor combinations are considered to be sustainable or renewable sources of energy 143 144 In 2006 it was estimated that with seawater extraction there was likely five billion years worth of uranium resources for use in breeder reactors 145 Breeder technology has been used in several reactors but as of 2006 the high cost of reprocessing fuel safely requires uranium prices of more than US 200 kg before becoming justified economically 146 Breeder reactors are however being developed for their potential to burn up all of the actinides the most active and dangerous components in the present inventory of nuclear waste while also producing power and creating additional quantities of fuel for more reactors via the breeding process 147 148 As of 2017 there are two breeders producing commercial power BN 600 reactor and the BN 800 reactor both in Russia 149 The Phenix breeder reactor in France was powered down in 2009 after 36 years of operation 149 Both China and India are building breeder reactors The Indian 500 MWe Prototype Fast Breeder Reactor is in the commissioning phase 150 with plans to build more 151 Another alternative to fast neutron breeders are thermal neutron breeder reactors that use uranium 233 bred from thorium as fission fuel in the thorium fuel cycle 152 Thorium is about 3 5 times more common than uranium in the Earth s crust and has different geographic characteristics 152 India s three stage nuclear power programme features the use of a thorium fuel cycle in the third stage as it has abundant thorium reserves but little uranium 152 DecommissioningMain article Nuclear decommissioning Nuclear decommissioning is the process of dismantling a nuclear facility to the point that it no longer requires measures for radiation protection 153 returning the facility and its parts to a safe enough level to be entrusted for other uses 154 Due to the presence of radioactive materials nuclear decommissioning presents technical and economic challenges 155 The costs of decommissioning are generally spread over the lifetime of a facility and saved in a decommissioning fund 156 ProductionFurther information Nuclear power by country and List of nuclear reactors The status of nuclear power globally click for legend Share of electricity production from nuclear 2015 157 2019 world electricity generation by source total generation was 27 petawatt hours 158 159 Coal 37 Natural gas 24 Hydro 16 Nuclear 10 Wind 5 Solar 3 Other 5 Civilian nuclear power supplied 2 586 terawatt hours TWh of electricity in 2019 equivalent to about 10 of global electricity generation and was the second largest low carbon power source after hydroelectricity 37 160 Since electricity accounts for about 25 of world energy consumption nuclear power s contribution to global energy was about 2 5 in 2011 161 This is a little more than the combined global electricity production from wind solar biomass and geothermal power which together provided 2 of global final energy consumption in 2014 162 Nuclear power s share of global electricity production has fallen from 16 5 in 1997 in large part because the economics of nuclear power have become more difficult 163 As of March 2022 update there are 439 civilian fission reactors in the world with a combined electrical capacity of 392 gigawatt GW There are also 56 nuclear power reactors under construction and 96 reactors planned with a combined capacity of 62 GW and 96 GW respectively 164 The United States has the largest fleet of nuclear reactors generating over 800 TWh per year with an average capacity factor of 92 165 Most reactors under construction are generation III reactors in Asia 166 Regional differences in the use of nuclear power are large The United States produces the most nuclear energy in the world with nuclear power providing 20 of the electricity it consumes while France produces the highest percentage of its electrical energy from nuclear reactors 71 in 2019 18 In the European Union nuclear power provides 26 of the electricity as of 2018 167 Nuclear power is the single largest low carbon electricity source in the United States 168 and accounts for two thirds of the European Union s low carbon electricity 169 Nuclear energy policy differs among European Union countries and some such as Austria Estonia Ireland and Italy have no active nuclear power stations In addition there were approximately 140 naval vessels using nuclear propulsion in operation powered by about 180 reactors 170 171 These include military and some civilian ships such as nuclear powered icebreakers 172 International research is continuing into additional uses of process heat such as hydrogen production in support of a hydrogen economy for desalinating sea water and for use in district heating systems 173 EconomicsMain articles Economics of nuclear power plants List of companies in the nuclear sector and cost of electricity by source The economics of new nuclear power plants is a controversial subject and multi billion dollar investments depend on the choice of energy sources Nuclear power plants typically have high capital costs for building the plant For this reason comparison with other power generation methods is strongly dependent on assumptions about construction timescales and capital financing for nuclear plants Fuel costs account for about 30 percent of the operating costs while prices are subject to the market 174 The high cost of construction is one of the biggest challenges for nuclear power plants A new 1 100 MW plant is estimated to cost between 6 billion to 9 billion 175 Nuclear power cost trends show large disparity by nation design build rate and the establishment of familiarity in expertise The only two nations for which data is available that saw cost decreases in the 2000s were India and South Korea 176 Analysis of the economics of nuclear power must also take into account who bears the risks of future uncertainties As of 2010 all operating nuclear power plants have been developed by state owned or regulated electric utility monopolies 177 Many countries have since liberalized the electricity market where these risks and the risk of cheaper competitors emerging before capital costs are recovered are borne by plant suppliers and operators rather than consumers which leads to a significantly different evaluation of the economics of new nuclear power plants 178 The levelized cost of electricity LCOE from a new nuclear power plant is estimated to be 69 USD MWh according to an analysis by the International Energy Agency and the OECD Nuclear Energy Agency This represents the median cost estimate for an nth of a kind nuclear power plant to be completed in 2025 at a discount rate of 7 Nuclear power was found to be the least cost option among dispatchable technologies 179 Variable renewables can generate cheaper electricity the median cost of onshore wind power was estimated to be 50 USD MWh and utility scale solar power 56 USD MWh 179 At the assumed CO2 emission cost of 30 USD ton power from coal 88 USD MWh and gas 71 USD MWh is more expensive than low carbon technologies Electricity from long term operation of nuclear power plants by lifetime extension was found the be the least cost option at 32 USD MWh 179 Measures to mitigate global warming such as a carbon tax or carbon emissions trading may favor the economics of nuclear power 180 181 Extreme weather events including events made more severe by climate change are decreasing all energy source reliability including nuclear energy by a small degree depending on location siting 182 183 New small modular reactors such as those developed by NuScale Power are aimed at reducing the investment costs for new construction by making the reactors smaller and modular so that they can be built in a factory Certain designs had considerable early positive economics such as the CANDU which realized much higher capacity factor and reliability when compared to generation II light water reactors up to the 1990s 184 Nuclear power plants though capable of some grid load following are typically run as much as possible to keep the cost of the generated electrical energy as low as possible supplying mostly base load electricity 185 Due to the on line refueling reactor design PHWRs of which the CANDU design is a part continue to hold many world record positions for longest continual electricity generation often over 800 days 186 The specific record as of 2019 is held by a PHWR at Kaiga Atomic Power Station generating electricity continuously for 962 days 187 Costs not considered in LCOE calculations include funds for research and development and disasters the Fukushima disaster is estimated to cost taxpayers 187 billion 188 Governments were found to in some cases force consumers to pay upfront for potential cost overruns 82 or subsidize uneconomic nuclear energy 189 or be required to do so 54 Nuclear operators are liable to pay for the waste management in the EU 190 In the U S the Congress reportedly decided 40 years ago that the nation and not private companies would be responsible for storing radioactive waste with taxpayers paying for the costs 191 The World Nuclear Waste Report 2019 found that even in countries in which the polluter pays principle is a legal requirement it is applied incompletely and notes the case of the German Asse II deep geological disposal facility where the retrieval of large amounts of waste has to be paid for by taxpayers 192 Similarly other forms of energy including fossil fuels and renewables have a portion of their costs covered by governments 193 Use in space The multi mission radioisotope thermoelectric generator MMRTG used in several space missions such as the Curiosity Mars rover Main article Nuclear power in space The most common use of nuclear power in space is the use of radioisotope thermoelectric generators which use radioactive decay to generate power These power generators are relatively small scale few kW and they are mostly used to power space missions and experiments for long periods where solar power is not available in sufficient quantity such as in the Voyager 2 space probe 194 A few space vehicles have been launched using nuclear reactors 34 reactors belong to the Soviet RORSAT series and one was the American SNAP 10A 194 Both fission and fusion appear promising for space propulsion applications generating higher mission velocities with less reaction mass 194 195 SafetySee also Nuclear safety and security and Nuclear reactor safety system Death rates from air pollution and accidents related to energy production measured in deaths in the past per terawatt hours TWh Nuclear power plants have three unique characteristics that affect their safety as compared to other power plants Firstly intensely radioactive materials are present in a nuclear reactor Their release to the environment could be hazardous Secondly the fission products which make up most of the intensely radioactive substances in the reactor continue to generate a significant amount of decay heat even after the fission chain reaction has stopped If the heat cannot be removed from the reactor the fuel rods may overheat and release radioactive materials Thirdly a criticality accident a rapid increase of the reactor power is possible in certain reactor designs if the chain reaction cannot be controlled These three characteristics have to be taken into account when designing nuclear reactors 196 All modern reactors are designed so that an uncontrolled increase of the reactor power is prevented by natural feedback mechanisms a concept known as negative void coefficient of reactivity If the temperature or the amount of steam in the reactor increases the fission rate inherently decreases The chain reaction can also be manually stopped by inserting control rods into the reactor core Emergency core cooling systems ECCS can remove the decay heat from the reactor if normal cooling systems fail 197 If the ECCS fails multiple physical barriers limit the release of radioactive materials to the environment even in the case of an accident The last physical barrier is the large containment building 196 With a death rate of 0 07 per TWh nuclear power is the safest energy source per unit of energy generated in terms of mortality when the historical track record is considered 198 Energy produced by coal petroleum natural gas and hydropower has caused more deaths per unit of energy generated due to air pollution and energy accidents This is found when comparing the immediate deaths from other energy sources to both the immediate and the latent or predicted indirect cancer deaths from nuclear energy accidents 199 200 When the direct and indirect fatalities including fatalities resulting from the mining and air pollution from nuclear power and fossil fuels are compared 201 the use of nuclear power has been calculated to have prevented about 1 84 million deaths from air pollution between 1971 and 2009 by reducing the proportion of energy that would otherwise have been generated by fossil fuels 202 203 Following the 2011 Fukushima nuclear disaster it has been estimated that if Japan had never adopted nuclear power accidents and pollution from coal or gas plants would have caused more lost years of life 204 Serious impacts of nuclear accidents are often not directly attributable to radiation exposure but rather social and psychological effects Evacuation and long term displacement of affected populations created problems for many people especially the elderly and hospital patients 205 Forced evacuation from a nuclear accident may lead to social isolation anxiety depression psychosomatic medical problems reckless behavior and suicide A comprehensive 2005 study on the aftermath of the Chernobyl disaster concluded that the mental health impact is the largest public health problem caused by the accident 206 Frank N von Hippel an American scientist commented that a disproportionate fear of ionizing radiation radiophobia could have long term psychological effects on the population of contaminated areas following the Fukushima disaster 207 Accidents Following the 2011 Fukushima Daiichi nuclear disaster the world s worst nuclear accident since 1986 50 000 households were displaced after radiation leaked into the air soil and sea 208 Radiation checks led to bans of some shipments of vegetables and fish 209 Reactor decay heat as a fraction of full power after the reactor shutdown using two different correlations To remove the decay heat reactors need cooling after the shutdown of the fission reactions A loss of the ability to remove decay heat caused the Fukushima accident See also Energy accidents Nuclear and radiation accidents and incidents and Lists of nuclear disasters and radioactive incidents Some serious nuclear and radiation accidents have occurred The severity of nuclear accidents is generally classified using the International Nuclear Event Scale INES introduced by the International Atomic Energy Agency IAEA The scale ranks anomalous events or accidents on a scale from 0 a deviation from normal operation that poses no safety risk to 7 a major accident with widespread effects There have been three accidents of level 5 or higher in the civilian nuclear power industry two of which the Chernobyl accident and the Fukushima accident are ranked at level 7 The first major nuclear accidents were the Kyshtym disaster in the Soviet Union and the Windscale fire in the United Kingdom both in 1957 The first major accident at a nuclear reactor in the USA occurred in 1961 at the SL 1 a U S Army experimental nuclear power reactor at the Idaho National Laboratory An uncontrolled chain reaction resulted in a steam explosion which killed the three crew members and caused a meltdown 210 211 Another serious accident happened in 1968 when one of the two liquid metal cooled reactors on board the Soviet submarine K 27 underwent a fuel element failure with the emission of gaseous fission products into the surrounding air resulting in 9 crew fatalities and 83 injuries 212 The Fukushima Daiichi nuclear accident was caused by the 2011 Tohoku earthquake and tsunami The accident has not caused any radiation related deaths but resulted in radioactive contamination of surrounding areas The difficult cleanup operation is expected to cost tens of billions of dollars over 40 or more years 213 214 The Three Mile Island accident in 1979 was a smaller scale accident rated at INES level 5 There were no direct or indirect deaths caused by the accident 215 The impact of nuclear accidents is controversial According to Benjamin K Sovacool fission energy accidents ranked first among energy sources in terms of their total economic cost accounting for 41 percent of all property damage attributed to energy accidents 216 Another analysis found that coal oil liquid petroleum gas and hydroelectric accidents primarily due to the Banqiao Dam disaster have resulted in greater economic impacts than nuclear power accidents 217 The study compares latent cancer deaths attributable to nuclear with immediate deaths from other energy sources per unit of energy generated and does not include fossil fuel related cancer and other indirect deaths created by the use of fossil fuel consumption in its severe accident an accident with more than five fatalities classification The Chernobyl accident in 1986 caused approximately 50 deaths from direct and indirect effects and some temporary serious injuries from acute radiation syndrome 218 The future predicted mortality from increases in cancer rates is estimated at 4000 in the decades to come 219 220 221 However the costs have been large and are increasing Nuclear power works under an insurance framework that limits or structures accident liabilities in accordance with national and international conventions 222 It is often argued that this potential shortfall in liability represents an external cost not included in the cost of nuclear electricity This cost is small amounting to about 0 1 of the levelized cost of electricity according to a study by the Congressional Budget Office in the United States 223 These beyond regular insurance costs for worst case scenarios are not unique to nuclear power Hydroelectric power plants are similarly not fully insured against a catastrophic event such as dam failures For example the failure of the Banqiao Dam caused the death of an estimated 30 000 to 200 000 people and 11 million people lost their homes As private insurers base dam insurance premiums on limited scenarios major disaster insurance in this sector is likewise provided by the state 224 Attacks and sabotage Main articles Vulnerability of nuclear plants to attack Nuclear terrorism and Nuclear safety in the United States Terrorists could target nuclear power plants in an attempt to release radioactive contamination into the community The United States 9 11 Commission has said that nuclear power plants were potential targets originally considered for the September 11 2001 attacks An attack on a reactor s spent fuel pool could also be serious as these pools are less protected than the reactor core The release of radioactivity could lead to thousands of near term deaths and greater numbers of long term fatalities 225 In the United States the NRC carries out Force on Force FOF exercises at all nuclear power plant sites at least once every three years 225 In the United States plants are surrounded by a double row of tall fences which are electronically monitored The plant grounds are patrolled by a sizeable force of armed guards 226 Insider sabotage is also a threat because insiders can observe and work around security measures Successful insider crimes depended on the perpetrators observation and knowledge of security vulnerabilities 227 A fire caused 5 10 million dollars worth of damage to New York s Indian Point Energy Center in 1971 228 The arsonist was a plant maintenance worker 229 ProliferationFurther information Nuclear proliferation See also Plutonium Management and Disposition Agreement United States and USSR Russian nuclear weapons stockpiles 1945 2006 The Megatons to Megawatts Program was the main driving force behind the sharp reduction in the quantity of nuclear weapons worldwide since the cold war ended 230 231 The guided missile cruiser USS Monterey CG 61 receives fuel at sea FAS from the Nimitz class aircraft carrier USS George Washington CVN 73 Nuclear proliferation is the spread of nuclear weapons fissionable material and weapons related nuclear technology to states that do not already possess nuclear weapons Many technologies and materials associated with the creation of a nuclear power program have a dual use capability in that they can also be used to make nuclear weapons For this reason nuclear power presents proliferation risks Nuclear power program can become a route leading to a nuclear weapon An example of this is the concern over Iran s nuclear program 232 The re purposing of civilian nuclear industries for military purposes would be a breach of the Non Proliferation Treaty to which 190 countries adhere As of April 2012 there are thirty one countries that have civil nuclear power plants 233 of which nine have nuclear weapons The vast majority of these nuclear weapons states have produced weapons before commercial nuclear power stations A fundamental goal for global security is to minimize the nuclear proliferation risks associated with the expansion of nuclear power 232 The Global Nuclear Energy Partnership was an international effort to create a distribution network in which developing countries in need of energy would receive nuclear fuel at a discounted rate in exchange for that nation agreeing to forgo their own indigenous development of a uranium enrichment program The France based Eurodif European Gaseous Diffusion Uranium Enrichment Consortium is a program that successfully implemented this concept with Spain and other countries without enrichment facilities buying a share of the fuel produced at the French controlled enrichment facility but without a transfer of technology 234 Iran was an early participant from 1974 and remains a shareholder of Eurodif via Sofidif A 2009 United Nations report said that the revival of interest in nuclear power could result in the worldwide dissemination of uranium enrichment and spent fuel reprocessing technologies which present obvious risks of proliferation as these technologies can produce fissile materials that are directly usable in nuclear weapons 235 On the other hand power reactors can also reduce nuclear weapons arsenals when military grade nuclear materials are reprocessed to be used as fuel in nuclear power plants The Megatons to Megawatts Program is considered the single most successful non proliferation program to date 230 Up to 2005 the program had processed 8 billion of high enriched weapons grade uranium into low enriched uranium suitable as nuclear fuel for commercial fission reactors by diluting it with natural uranium This corresponds to the elimination of 10 000 nuclear weapons 236 For approximately two decades this material generated nearly 10 percent of all the electricity consumed in the United States or about half of all U S nuclear electricity with a total of around 7 000 TWh of electricity produced 237 In total it is estimated to have cost 17 billion a bargain for US ratepayers with Russia profiting 12 billion from the deal 237 Much needed profit for the Russian nuclear oversight industry which after the collapse of the Soviet economy had difficulties paying for the maintenance and security of the Russian Federations highly enriched uranium and warheads 238 The Megatons to Megawatts Program was hailed as a major success by anti nuclear weapon advocates as it has largely been the driving force behind the sharp reduction in the number of nuclear weapons worldwide since the cold war ended 230 However without an increase in nuclear reactors and greater demand for fissile fuel the cost of dismantling and down blending has dissuaded Russia from continuing their disarmament As of 2013 Russia appears to not be interested in extending the program 239 Environmental impactMain article Environmental impact of nuclear power The Ikata Nuclear Power Plant a pressurized water reactor that cools by utilizing a secondary coolant heat exchanger with a large body of water an alternative cooling approach to large cooling towers Being a low carbon energy source with relatively little land use requirements nuclear energy can have a positive environmental impact It also requires a constant supply of significant amounts of water and affects the environment through mining and milling 240 241 242 243 Its largest potential negative impacts on the environment may arise from its transgenerational risks for nuclear weapons proliferation that may increase risks of their use in the future risks for problems associated with the management of the radioactive waste such as groundwater contamination risks for accidents and for risks for various forms of attacks on waste storage sites or reprocessing and power plants 70 244 245 246 247 243 248 249 However these remain mostly only risks as historically there have only been few disasters at nuclear power plants with known relatively substantial environmental impacts Carbon emissions See also Life cycle greenhouse gas emissions of energy sources Further information Historic effect on carbon emissions Life cycle greenhouse gas emissions of electricity supply technologies median values calculated by IPCC 250 Nuclear power is one of the leading low carbon power generation methods of producing electricity and in terms of total life cycle greenhouse gas emissions per unit of energy generated has emission values comparable to or lower than renewable energy 251 252 A 2014 analysis of the carbon footprint literature by the Intergovernmental Panel on Climate Change IPCC reported that the embodied total life cycle emission intensity of nuclear power has a median value of 12 g CO2eq kWh which is the lowest among all commercial baseload energy sources 250 253 This is contrasted with coal and natural gas at 820 and 490 g CO2 eq kWh 250 253 As of 2021 nuclear reactors worldwide have helped avoid the emission of 72 billion tonnes of carbon dioxide since 1970 compared to coal fired electricity generation according to a report 203 254 Radiation The average dose from natural background radiation is 2 4 millisievert per year mSv a globally It varies between 1 mSv a and 13 mSv a depending mostly on the geology of the location According to the United Nations UNSCEAR regular nuclear power plant operations including the nuclear fuel cycle increases this amount by 0 0002 mSv a of public exposure as a global average The average dose from operating nuclear power plants to the local populations around them is less than 0 0001 mSv a 255 For comparison the average dose to those living within 50 miles of a coal power plant is over three times this dose at 0 0003 mSv a 256 Chernobyl resulted in the most affected surrounding populations and male recovery personnel receiving an average initial 50 to 100 mSv over a few hours to weeks while the remaining global legacy of the worst nuclear power plant accident in average exposure is 0 002 mSv a and is continuously dropping at the decaying rate from the initial high of 0 04 mSv per person averaged over the entire populace of the Northern Hemisphere in the year of the accident in 1986 255 DebateMain article Nuclear power debate See also Nuclear energy policy Pro nuclear movement and Anti nuclear movement A comparison of prices over time for energy from nuclear fission and from other sources Over the presented time thousands of wind turbines and similar were built on assembly lines in mass production resulting in an economy of scale While nuclear remains bespoke many first of their kind facilities added in the timeframe indicated and none are in serial production Our World in Data notes that this cost is the global average while the 2 projects that drove nuclear pricing upwards were in the US The organization recognises that the median cost of the most exported and produced nuclear energy facility in the 2010s the South Korean APR1400 remained constant including in export 257 LCOE is a measure of the average net present cost of electricity generation for a generating plant over its lifetime As a metric it remains controversial as the lifespan of units are not independent but manufacturer projections not a demonstrated longevity The nuclear power debate concerns the controversy which has surrounded the deployment and use of nuclear fission reactors to generate electricity from nuclear fuel for civilian purposes 25 258 26 Proponents of nuclear energy regard it as a sustainable energy source that reduces carbon emissions and increases energy security by decreasing dependence on other energy sources that are also 87 88 89 often dependent on imports 259 260 261 For example proponents note that annually nuclear generated electricity reduces 470 million metric tons of carbon dioxide emissions that would otherwise come from fossil fuels 262 Additionally the amount of comparatively low waste that nuclear energy does create is safely disposed of by the large scale nuclear energy production facilities or it is repurposed recycled for other energy uses 263 M King Hubbert who popularized the concept of peak oil saw oil as a resource that would run out and considered nuclear energy its replacement 264 Proponents also claim that the present quantity of nuclear waste is small and can be reduced through the latest technology of newer reactors and that the operational safety record of fission electricity in terms of deaths is so far unparalleled 14 Kharecha and Hansen estimated that global nuclear power has prevented an average of 1 84 million air pollution related deaths and 64 gigatonnes of CO2 equivalent GtCO2 eq greenhouse gas GHG emissions that would have resulted from fossil fuel burning and if continued it could prevent up to 7 million deaths and 240 GtCO2 eq emissions by 2050 203 Proponents also bring to attention the opportunity cost of utilizing other forms of electricity For example the Environmental Protection Agency estimates that coal kills 30 000 people a year 265 as a result of its environmental impact while 60 people died in the Chernobyl disaster 266 A real world example of impact provided by proponents is the 650 000 ton increase in carbon emissions in the two months following the closure of the Vermont Yankee nuclear plant 267 Opponents believe that nuclear power poses many threats to people s health and environment 268 269 such as the risk of nuclear weapons proliferation long term safe waste management and terrorism in the future 270 271 They also contend that nuclear power plants are complex systems where many things can and have gone wrong 272 273 Costs of the Chernobyl disaster amount to 68 billion as of 2019 and are increasing 34 the Fukushima disaster is estimated to cost taxpayers 187 billion 188 and radioactive waste management is estimated to cost the EU nuclear operators 250 billion by 2050 190 However in countries that already use nuclear energy when not considering reprocessing intermediate nuclear waste disposal costs could be relatively fixed to certain but unknown degrees 274 as the main part of these costs stems from the operation of the intermediate storage facility 275 Critics find that one of the largest drawbacks to building new nuclear fission power plants are the large construction and operating costs when compared to alternatives of sustainable energy sources 53 276 81 242 277 Further costs include costs for ongoing research and development expensive reprocessing in cases where such is practiced 70 71 72 74 and decommissioning 278 279 280 Proponents note that focussing on the Levelized Cost of Energy LCOE however ignores the value premium associated with 24 7 dispatchable electricity and the cost of storage and backup systems necessary to integrate variable energy sources into a reliable electrical grid 281 Nuclear thus remains the dispatchable low carbon technology with the lowest expected costs in 2025 Only large hydro reservoirs can provide a similar contribution at comparable costs but remain highly dependent on the natural endowments of individual countries 282 Anti nuclear protest near nuclear waste disposal centre at Gorleben in northern Germany Overall many opponents find that nuclear energy cannot meaningfully contribute to climate change mitigation In general they find it to be too dangerous too expensive to take too long for deployment to be an obstacle to achieving a transition towards sustainability and carbon neutrality 81 283 284 285 effectively being a distracting 286 287 competition for resources i e human financial time infrastructure and expertise for the deployment and development of alternative sustainable energy system technologies 82 287 81 288 such as for wind ocean and solar 81 including e g floating solar as well as ways to manage their intermittency other than nuclear baseload 289 generation such as dispatchable generation renewables diversification 290 291 super grids flexible energy demand and supply regulating smart grids and energy storage 292 293 294 295 296 technologies 297 298 299 300 301 302 303 304 249 Nevertheless there is ongoing research and debate over costs of new nuclear especially in regions where i a seasonal energy storage is difficult to provide and which aim to phase out fossil fuels in favor of low carbon power faster than the global average 305 Some find that financial transition costs for a 100 renewables based European energy system that has completely phased out nuclear energy could be more costly by 2050 based on current technologies i e not considering potential advances in e g green hydrogen transmission and flexibility capacities ways to reduce energy needs geothermal energy and fusion energy when the grid only extends across Europe 306 Arguments of economics and safety are used by both sides of the debate Comparison with renewable energy See also Renewable energy debate Slowing global warming requires a transition to a low carbon economy mainly by burning far less fossil fuel Limiting global warming to 1 5 C is technically possible if no new fossil fuel power plants are built from 2019 307 This has generated considerable interest and dispute in determining the best path forward to rapidly replace fossil based fuels in the global energy mix 308 309 with intense academic debate 310 311 Sometimes the IEA says that countries without nuclear should develop it as well as their renewable power 312 World total primary energy supply of 162 494 TWh or 13 792 Mtoe by fuels in 2017 IEA 2019 313 6 8 Oil 32 Coal Peat Shale 27 1 Natural Gas 22 2 Biofuels and waste 9 5 Nuclear 4 9 Hydro 2 5 Others Renewables 1 8 Several studies suggest that it might be theoretically possible to cover a majority of world energy generation with new renewable sources The Intergovernmental Panel on Climate Change IPCC has said that if governments were supportive renewable energy supply could account for close to 80 of the world s energy use by 2050 314 While in developed nations the economically feasible geography for new hydropower is lacking with every geographically suitable area largely already exploited 315 some proponents of wind and solar energy claim these resources alone could eliminate the need for nuclear power 311 316 Nuclear power is comparable to and in some cases lower than many renewable energy sources in terms of lives lost in the past per unit of electricity delivered 201 199 317 Depending on recycling of renewable energy technologies nuclear reactors may produce a much smaller volume of waste although much more toxic expensive to manage and longer lived 318 245 A nuclear plant also needs to be disassembled and removed and much of the disassembled nuclear plant needs to be stored as low level nuclear waste for a few decades 319 The disposal and management of the wide variety 320 of radioactive waste of which there are over one quarter of a million tons as of 2018 can cause future damage and costs across the world for over or during hundreds of thousands of years 321 322 323 possibly over a million years 324 325 326 327 due to issues such as leakage 328 malign retrieval vulnerability to attacks including of reprocessing 73 70 and power plants groundwater contamination radiation and leakage to above ground brine leakage or bacterial corrosion 329 324 330 331 The European Commission Joint Research Centre found that as of 2021 the necessary technologies for geological disposal of nuclear waste are now available and can be deployed 332 Corrosion experts noted in 2020 that putting the problem of storage off any longer isn t good for anyone 333 Separated plutonium and enriched uranium could be used for nuclear weapons which even with the current centralized control e g state level and level of prevalence are considered to be a difficult and substantial global risk for substantial future impacts on human health lives civilization and the environment 70 244 245 246 247 Speed of transition and investment needed Analysis in 2015 by professor Barry W Brook and colleagues found that nuclear energy could displace or remove fossil fuels from the electric grid completely within 10 years This finding was based on the historically modest and proven rate at which nuclear energy was added in France and Sweden during their building programs in the 1980s 334 335 In a similar analysis Brook had earlier determined that 50 of all global energy including transportation synthetic fuels etc could be generated within approximately 30 years if the global nuclear fission build rate was identical to historical proven installation rates calculated in GW per year per unit of global GDP GW year 336 This is in contrast to the conceptual studies for 100 renewable energy systems which would require an order of magnitude more costly global investment per year which has no historical precedent 337 These renewable scenarios would also need far greater land devoted to onshore wind and onshore solar projects 336 337 Brook notes that the principal limitations on nuclear fission are not technical economic or fuel related but are instead linked to complex issues of societal acceptance fiscal and political inertia and inadequate critical evaluation of the real world constraints facing the other low carbon alternatives 336 Scientific data indicates that assuming 2021 emissions levels humanity only has a carbon budget equivalent to 11 years of emissions left for limiting warming to 1 5 C 338 339 while the construction of new nuclear reactors took a median of 7 2 10 9 years in 2018 2020 331 substantially longer than alongside other measures scaling up the deployment of wind and solar especially for novel reactor types as well as being more risky often delayed and more dependent on state support 340 341 284 286 81 342 297 Researchers have cautioned that novel nuclear technologies which have been in development since decades 343 81 276 are less tested have higher proliferation risks have more new safety problems are often far from commercialization and are more expensive 276 81 242 344 are not available in time 77 82 345 286 346 296 347 Critics of nuclear energy often only oppose nuclear fission energy but not nuclear fusion however fusion energy is unlikely to be commercially widespread before 2050 348 349 350 351 352 Land use The median land area used by US nuclear power stations per 1 GW installed capacity is 1 3 square miles 353 354 To generate the same amount of electricity annually taking into account capacity factors from solar PV would require about 60 square miles and from a wind farm about 310 square miles 353 354 Not included in this is land required for the associated transmission lines water supply rail lines mining and processing of nuclear fuel and for waste disposal 355 ResearchAdvanced fission reactor designs Main article Generation IV reactor Current fission reactors in operation around the world are second or third generation systems with most of the first generation systems having been already retired Research into advanced generation IV reactor types was officially started by the Generation IV International Forum GIF based on eight technology goals including to improve economics safety proliferation resistance natural resource utilization and the ability to consume existing nuclear waste in the production of electricity Most of these reactors differ significantly from current operating light water reactors and are expected to be available for commercial construction after 2030 356 Hybrid fusion fission Main article Nuclear fusion fission hybrid Hybrid nuclear power is a proposed means of generating power by the use of a combination of nuclear fusion and fission processes The concept dates to the 1950s and was briefly advocated by Hans Bethe during the 1970s but largely remained unexplored until a revival of interest in 2009 due to delays in the realization of pure fusion When a sustained nuclear fusion power plant is built it has the potential to be capable of extracting all the fission energy that remains in spent fission fuel reducing the volume of nuclear waste by orders of magnitude and more importantly eliminating all actinides present in the spent fuel substances which cause security concerns 357 Fusion Schematic of the ITER tokamak under construction in France Main articles Nuclear fusion and Fusion power Nuclear fusion reactions have the potential to be safer and generate less radioactive waste than fission 358 359 These reactions appear potentially viable though technically quite difficult and have yet to be created on a scale that could be used in a functional power plant Fusion power has been under theoretical and experimental investigation since the 1950s Nuclear fusion research is underway but fusion energy is not likely to be commercially widespread before 2050 360 361 362 Several experimental nuclear fusion reactors and facilities exist The largest and most ambitious international nuclear fusion project currently in progress is ITER a large tokamak under construction in France ITER is planned to pave the way for commercial fusion power by demonstrating self sustained nuclear fusion reactions with positive energy gain Construction of the ITER facility began in 2007 but the project has run into many delays and budget overruns The facility is now not expected to begin operations until the year 2027 11 years after initially anticipated 363 A follow on commercial nuclear fusion power station DEMO has been proposed 348 364 There are also suggestions for a power plant based upon a different fusion approach that of an inertial fusion power plant Fusion powered electricity generation was initially believed to be readily achievable as fission electric power had been However the extreme requirements for continuous reactions and plasma containment led to projections being extended by several decades In 2020 more than 80 years after the first attempts commercialization of fusion power production was thought to be unlikely before 2050 348 349 350 351 352 See also Nuclear technology portal Energy portalAtomic battery Nuclear power by country Nuclear weapons debate Pro nuclear movement Thorium based nuclear power Uranium mining debate World energy consumptionReferences a b PRIS Home pris iaea org Retrieved 2022 08 17 Reactors Modern Day Alchemy Argonne s Nuclear Science and Technology Legacy www ne anl gov Retrieved 24 March 2021 Wellerstein Alex 2008 Inside the atomic patent office Bulletin of the Atomic Scientists 64 2 26 31 Bibcode 2008BuAtS 64b 26W doi 10 2968 064002008 The Einstein Letter Atomicarchive com Retrieved 2013 06 22 Nautilus SSN 571 US Naval History and Heritage Command US Navy Wendt Gerald Geddes Donald Porter 1945 The Atomic Age Opens New York Pocket Books Reactors Designed by Argonne National Laboratory Fast Reactor Technology U S Department of Energy Argonne National Laboratory 2012 Retrieved 2012 07 25 Reactor Makes Electricity Popular Mechanics Hearst Magazines March 1952 p 105 a b 50 Years of Nuclear Energy PDF International Atomic Energy Agency Retrieved 2006 11 09 STR Submarine Thermal Reactor in Reactors Designed by Argonne National Laboratory Light Water Reactor Technology Development U S Department of Energy Argonne National Laboratory 2012 Retrieved 2012 07 25 Rockwell Theodore 1992 The Rickover Effect Naval Institute Press p 162 ISBN 978 1 55750 702 0 From Obninsk Beyond Nuclear Power Conference Looks to Future International Atomic Energy Agency 2004 06 23 Retrieved 2006 06 27 Hill C N 2013 An atomic empire a technical history of the rise and fall of the British atomic energy programme London Imperial College Press ISBN 9781908977434 a b Bernard L Cohen 1990 The Nuclear Energy Option An Alternative for the 90s New York Plenum Press ISBN 978 0 306 43567 6 Sharon Beder 2006 The Japanese Situation English version of conclusion of Sharon Beder Power Play The Fight to Control the World s Electricity Soshisha Japan Palfreman Jon 1997 Why the French Like Nuclear Energy Frontline Public Broadcasting Service Retrieved 25 August 2007 Rene de Preneuf Nuclear Power in France Why does it Work Archived from the original on 13 August 2007 Retrieved 25 August 2007 a b Nuclear Share of Electricity Generation in 2019 Power Reactor Information System International Atomic Energy Agency Retrieved 2021 01 09 Garb Paula 1999 Review of Critical Masses Opposition to Nuclear Power in California 1958 1978 Journal of Political Ecology 6 Archived from the original on 2018 06 01 Retrieved 2011 03 14 a b c Rudig Wolfgang ed 1990 Anti nuclear Movements A World Survey of Opposition to Nuclear Energy Detroit MI Longman Current Affairs p 1 ISBN 978 0 8103 9000 3 Brian Martin 2007 Opposing nuclear power past and present Social Alternatives 26 2 43 47 Stephen Mills Roger Williams 1986 Public acceptance of new technologies an international review London Croom Helm pp 375 376 ISBN 9780709943198 Robert Gottlieb 2005 Forcing the Spring The Transformation of the American Environmental Movement Revised Edition Island Press p 237 Falk Jim 1982 Global Fission The Battle Over Nuclear Power Melbourne Oxford University Press pp 95 96 ISBN 978 0 19 554315 5 a b Walker J Samuel 2004 Three Mile Island A Nuclear Crisis in Historical Perspective Berkeley University of California Press pp 10 11 a b Herbert P Kitschelt 1986 Political Opportunity and Political Protest Anti Nuclear Movements in Four Democracies PDF British Journal of Political Science 16 1 57 doi 10 1017 s000712340000380x S2CID 154479502 Herbert P Kitschelt 1986 Political Opportunity and Political Protest Anti Nuclear Movements in Four Democracies PDF British Journal of Political Science 16 1 71 doi 10 1017 s000712340000380x S2CID 154479502 Costs of Nuclear Power Plants What Went Wrong www phyast pitt edu Vance Ginn Elliott Raia August 18 2017 nuclear energy may soon be free from its tangled regulatory web Washington Examiner Nuclear Power Outlook for New U S Reactors PDF p 3 Cook James 1985 02 11 Nuclear Follies Forbes Magazine Thorpe Gary S 2015 AP Environmental Science 6th ed Barrons Educational Series ISBN 978 1 4380 6728 5 ISBN 1 4380 6728 3 Chernobyl Nuclear Accident www iaea org IAEA 14 May 2014 a b Chernobyl Assessment of Radiological and Health Impact 2002 update Chapter II The release dispersion and deposition of radionuclides PDF OECD NEA 2002 Archived PDF from the original on 22 June 2015 Retrieved 3 June 2015 Johnson Thomas author director 2006 The battle of Chernobyl Play Film Discovery Channel see 1996 interview with Mikhail Gorbachev a b Analysis Nuclear renaissance could fizzle after Japan quake Reuters 2011 03 14 Retrieved 2011 03 14 a b Trend in Electricity Supplied International Atomic Energy Agency Retrieved 2021 01 09 Analysis The legacy of the Fukushima nuclear disaster Carbon Brief 10 March 2016 Retrieved 24 March 2021 Sylvia Westall amp Fredrik Dahl 2011 06 24 IAEA Head Sees Wide Support for Stricter Nuclear Plant Safety Scientific American Archived from the original on 2011 06 25 Jo Chandler 2011 03 19 Is this the end of the nuclear revival The Sydney Morning Herald Aubrey Belford 2011 03 17 Indonesia to Continue Plans for Nuclear Power The New York Times Piers Morgan 2011 03 17 Israel Prime Minister Netanyahu Japan situation has caused me to reconsider nuclear power CNN Retrieved 2011 03 17 Israeli PM cancels plan to build nuclear plant xinhuanet com 2011 03 18 Archived from the original on March 18 2011 Retrieved 2011 03 17 Startup of Sendai Nuclear Power Unit No 1 Kyushu Electric Power Company Inc 2015 08 11 Archived from the original on 2017 05 25 Retrieved 2015 08 12 Japan turns back to nuclear power in post Fukushima shift Financial Times 24 August 2022 Retrieved November 15 2022 a b Japan Is Reopening Nuclear Power Plants and Planning To Build New Ones August 25 2022 January Taking a fresh look at the future of nuclear power www iea org Plans for New Reactors Worldwide World Nuclear Association October 2015 International Energy outlook 2016 US Energy Information Administration Retrieved 17 August 2016 Plans for New Nuclear Reactors Worldwide www world nuclear org World Nuclear Association Retrieved 2018 09 29 Can China become a scientific superpower The great experiment The Economist 12 January 2019 Retrieved 25 January 2019 A global nuclear phaseout or renaissance DW 04 02 2021 Deutsche Welle www dw com Retrieved 25 November 2021 a b Griffiths James China s gambling on a nuclear future but is it destined to lose CNN Retrieved 25 November 2021 a b Building new nuclear plants in France uneconomical environment agency Reuters 10 December 2018 Retrieved 25 November 2021 World Nuclear Association Nuclear Power in Japan Germany s Uniper to restart coal fired power plant as Gazprom halts supply to Europe Reuters 22 August 2022 Macron bets on nuclear in carbon neutrality push announces new reactors Reuters 10 February 2022 Nuclear Power Reactors in the World 2015 Edition PDF International Atomic Energy Agency IAEA Retrieved 26 October 2017 a b How does a nuclear reactor make electricity www world nuclear org World Nuclear Association Retrieved 24 August 2018 Spyrou Artemis Mittig Wolfgang 2017 12 03 Atomic age began 75 years ago with the first controlled nuclear chain reaction Scientific American Retrieved 2018 11 18 a b Stages of the Nuclear Fuel Cycle NRC Web Nuclear Regulatory Commission Retrieved 17 April 2021 a b c d Nuclear Fuel Cycle Overview www world nuclear org World Nuclear Association Retrieved 17 April 2021 uranium Facts information pictures Encyclopedia com articles about uranium Encyclopedia com 2001 09 11 Retrieved 2013 06 14 Second Thoughts About Nuclear Power PDF A Policy Brief Challenges Facing Asia January 2011 Archived from the original PDF on January 16 2013 Uranium resources sufficient to meet projected nuclear energy requirements long into the future Nuclear Energy Agency NEA 2008 06 03 Archived from the original on 2008 12 05 Retrieved 2008 06 16 Uranium 2007 Resources Production and Demand Nuclear Energy Agency Organisation for Economic Co operation and Development 2008 ISBN 978 92 64 04766 2 Archived from the original on 2009 01 30 Energy Supply PDF p 271 Archived from the original PDF on 2007 12 15 and table 4 10 a b c Waste Management in the Nuclear Fuel Cycle Information and Issue Briefs World Nuclear Association 2006 Archived from the original on 2010 06 11 Retrieved 2006 11 09 Energy Supply PDF p 271 Archived from the original PDF on 2007 12 15 and figure 4 10 a b c d e Nuclear Reprocessing Dangerous Dirty and Expensive Union of Concerned Scientists Retrieved 26 January 2020 a b Toward an Assessment of Future Proliferation Risk PDF Retrieved 25 November 2021 a b Zhang Hui 1 July 2015 Plutonium reprocessing breeder reactors and decades of debate A Chinese response Bulletin of the Atomic Scientists 71 4 18 22 doi 10 1177 0096340215590790 ISSN 0096 3402 S2CID 145763632 a b Martin Brian 1 January 2015 Nuclear power and civil liberties Faculty of Law Humanities and the Arts Papers Archive 1 6 a b Kemp R Scott 29 June 2016 Environmental Detection of Clandestine Nuclear Weapon Programs Annual Review of Earth and Planetary Sciences 44 1 17 35 Bibcode 2016AREPS 44 17K doi 10 1146 annurev earth 060115 012526 hdl 1721 1 105171 ISSN 0084 6597 Although commercial reprocessing involves large expensive facilities some of which are identifiable in structure a small makeshift operation using standard industrial supplies is feasible Ferguson 1977 US GAO 1978 Such a plant could be constructed to have no visual signatures that would reveal its location by overhead imaging could be built in several months and once operational could produce weapon quantities of fissile material in several days Monnet Antoine Gabriel Sophie Percebois Jacques 1 September 2017 Long term availability of global uranium resources PDF Resources Policy 53 394 407 doi 10 1016 j resourpol 2017 07 008 ISSN 0301 4207 However it can be seen that the simulation in scenario A3 stops in 2075 due to a shortage the R P ratio cancels itself out The detailed calculations also show that even though it does not cancel itself out in scenario C2 the R P ratio constantly deteriorates falling from 130 years in 2013 to 10 years around 2100 which raises concerns of a shortage around that time The exploration constraints thus affect the security of supply Haji Maha N Drysdale Jessica Buesseler Ken Slocum Alexander H 25 June 2017 Ocean Testing of a Symbiotic Device to Harvest Uranium From Seawater Through the Use of Shell Enclosures OnePetro a href Template Cite journal html title Template Cite journal cite journal a Cite journal requires journal help a b c Muellner Nikolaus Arnold Nikolaus Gufler Klaus Kromp Wolfgang Renneberg Wolfgang Liebert Wolfgang 1 August 2021 Nuclear energy The solution to climate change Energy Policy 155 112363 doi 10 1016 j enpol 2021 112363 ISSN 0301 4215 S2CID 236254316 Chen Yanxin Martin Guillaume Chabert Christine Eschbach Romain He Hui Ye Guo an 1 March 2018 Prospects in China for nuclear development up to 2050 PDF Progress in Nuclear Energy 103 81 90 doi 10 1016 j pnucene 2017 11 011 ISSN 0149 1970 S2CID 126267852 Gabriel Sophie Baschwitz Anne Mathonniere Gilles Eleouet Tommy Fizaine Florian 1 August 2013 A critical assessment of global uranium resources including uranium in phosphate rocks and the possible impact of uranium shortages on nuclear power fleets Annals of Nuclear Energy 58 213 220 doi 10 1016 j anucene 2013 03 010 ISSN 0306 4549 Shang Delei Geissler Bernhard Mew Michael Satalkina Liliya Zenk Lukas Tulsidas Harikrishnan Barker Lee El Yahyaoui Adil Hussein Ahmed Taha Mohamed Zheng Yanhua Wang Menglai Yao Yuan Liu Xiaodong Deng Huidong Zhong Jun Li Ziying Steiner Gerald Bertau Martin Haneklaus Nils 1 April 2021 Unconventional uranium in China s phosphate rock Review and outlook Renewable and Sustainable Energy Reviews 140 110740 doi 10 1016 j rser 2021 110740 ISSN 1364 0321 S2CID 233577205 a b c d e f g h Wealer Ben Breyer Christian Hennicke Peter Hirsch Helmut von Hirschhausen Christian Klafka Peter Kromp Kolb Helga Prager Fabian Steigerwald Bjorn Traber Thure Baumann Franz Herold Anke Kemfert Claudia Kromp Wolfgang Liebert Wolfgang Muschen Klaus 16 October 2021 Kernenergie und Klima doi 10 5281 zenodo 5573718 a href Template Cite journal html title Template Cite journal cite journal a Cite journal requires journal help a b c d Hidden military implications of building back with new nuclear in the UK PDF Retrieved 24 November 2021 USGS Scientific Investigations Report 2012 5239 Critical Analysis of World Uranium Resources pubs usgs gov Retrieved 28 November 2021 Barthel F H 2007 Thorium and unconventional uranium resources a href Template Cite journal html title Template Cite journal cite journal a Cite journal requires journal help Dungan K Butler G Livens F R Warren L M 1 August 2017 Uranium from seawater Infinite resource or improbable aspiration Progress in Nuclear Energy 99 81 85 doi 10 1016 j pnucene 2017 04 016 ISSN 0149 1970 Fang Jianchun Lau Chi Keung Marco Lu Zhou Wu Wanshan 1 September 2018 Estimating Peak uranium production in China Based on a Stella model Energy Policy 120 250 258 doi 10 1016 j enpol 2018 05 049 ISSN 0301 4215 S2CID 158066671 a b Jewell Jessica Vetier Marta Garcia Cabrera Daniel 1 May 2019 The international technological nuclear cooperation landscape A new dataset and network analysis PDF Energy Policy 128 838 852 doi 10 1016 j enpol 2018 12 024 ISSN 0301 4215 S2CID 159233075 a b Xing Wanli Wang Anjian Yan Qiang Chen Shan 1 December 2017 A study of China s uranium resources security issues Based on analysis of China s nuclear power development trend Annals of Nuclear Energy 110 1156 1164 doi 10 1016 j anucene 2017 08 019 ISSN 0306 4549 a b Yue Qiang He Jingke Stamford Laurence Azapagic Adisa 2017 Nuclear Power in China An Analysis of the Current and Near Future Uranium Flows Energy Technology 5 5 681 691 doi 10 1002 ente 201600444 ISSN 2194 4296 Ferronsky V I Polyakov V A 2012 Isotopes of the Earth s Hydrosphere p 399 ISBN 978 94 007 2856 1 Toxicological profile for thorium PDF Agency for Toxic Substances and Disease Registry 1990 p 76 world average concentration in seawater is 0 05 mg L Harmsen and De Haan 1980 Huh C A Bacon M P 2002 Determination of thorium concentration in seawater by neutron activation analysis Analytical Chemistry 57 11 2138 2142 doi 10 1021 ac00288a030 a b Seko Noriaki July 29 2013 The current state of promising research into extraction of uranium from seawater Utilization of Japan s plentiful seas Global Energy Policy Research Wang Taiping Khangaonkar Tarang Long Wen Gill Gary 2014 Development of a Kelp Type Structure Module in a Coastal Ocean Model to Assess the Hydrodynamic Impact of Seawater Uranium Extraction Technology Journal of Marine Science and Engineering 2 81 92 doi 10 3390 jmse2010081 Alexandratos SD Kung S April 20 2016 Uranium in Seawater Industrial amp Engineering Chemistry Research 55 15 4101 4362 doi 10 1021 acs iecr 6b01293 a b c d Finck Philip Current Options for the Nuclear Fuel Cycle PDF JAIF Archived from the original PDF on 2012 04 12 a b Backgrounder on Radioactive Waste NRC Nuclear Regulatory Commission Retrieved 20 April 2021 A fast reactor system to shorten the lifetime of long lived fission products Radioactivity Minor Actinides www radioactivity eu com Ojovan Michael I 2014 An introduction to nuclear waste immobilisation second edition 2nd ed Kidlington Oxford U K Elsevier ISBN 978 0 08 099392 8 High level radioactive waste nuclearsafety gc ca Canadian Nuclear Safety Commission February 3 2014 Hedin A 1997 Spent nuclear fuel how dangerous is it A report from the project Description of risk U S Department of Energy Office of Scientific and Technical Information a href Template Cite journal html title Template Cite journal cite journal a Cite journal requires journal help Bruno Jordi Duro Laura Diaz Maurin Francois 2020 Chapter 13 Spent nuclear fuel and disposal Advances in Nuclear Fuel Chemistry Woodhead Publishing Series in Energy Woodhead Publishing pp 527 553 doi 10 1016 B978 0 08 102571 0 00014 8 ISBN 9780081025710 S2CID 216544356 Ojovan M I Lee W E 2005 An Introduction to Nuclear Waste Immobilisation Amsterdam Elsevier Science Publishers p 315 ISBN 978 0 08 044462 8 National Research Council 1995 Technical Bases for Yucca Mountain Standards Washington DC National Academy Press p 91 ISBN 978 0 309 05289 4 The Status of Nuclear Waste Disposal The American Physical Society January 2006 Retrieved 2008 06 06 Public Health and Environmental Radiation Protection Standards for Yucca Mountain Nevada Proposed Rule PDF United States Environmental Protection Agency 2005 08 22 Retrieved 2008 06 06 CRS Report for Congress Radioactive Waste Streams Waste Classification for Disposal PDF The Nuclear Waste Policy Act of 1982 NWPA defined irradiated fuel as spent nuclear fuel and the byproducts as high level waste Vandenbosch 2007 p 21 Duncan Clark 2012 07 09 Nuclear waste burning reactor moves a step closer to reality Environment guardian co uk Guardian London Retrieved 2013 06 14 George Monbiot A Waste of Waste Monbiot com Retrieved 2013 06 14 Energy From Thorium A Nuclear Waste Burning Liquid Salt Thorium Reactor YouTube 2009 07 23 Archived from the original on 2021 12 11 Retrieved 2013 06 14 Role of Thorium to Supplement Fuel Cycles of Future Nuclear Energy Systems PDF IAEA 2012 Retrieved 7 April 2021 Once irradiated in a reactor the fuel of a thorium uranium cycle contains an admixture of 232U half life 68 9 years whose radioactive decay chain includes emitters particularly 208Tl of high energy gamma radiation 2 6 MeV This makes spent thorium fuel treatment more difficult requires remote handling control during reprocessing and during further fuel fabrication but on the other hand may be considered as an additional non proliferation barrier NRC Low Level Waste www nrc gov Retrieved 28 August 2018 The Challenges of Nuclear Power Coal Ash Is More Radioactive than Nuclear Waste Scientific American 2007 12 13 Alex Gabbard 2008 02 05 Coal Combustion Nuclear Resource or Danger Oak Ridge National Laboratory Archived from the original on February 5 2007 Retrieved 2008 01 31 Coal ash is not more radioactive than nuclear waste CE Journal 2008 12 31 Archived from the original on 2009 08 27 Yankee Nuclear Power Plant Yankeerowe com Retrieved 2013 06 22 Why nuclear energy Generation Atomic 26 January 2021 NPR Nuclear Waste May Get A Second Life NPR Energy Consumption of the United States The Physics Factbook hypertextbook com NRC Dry Cask Storage Nrc gov 2013 03 26 Retrieved 2013 06 22 a b Montgomery Scott L 2010 The Powers That Be University of Chicago Press p 137 international Journal of Environmental Studies The Solutions for Nuclear waste December 2005 PDF Retrieved 2013 06 22 Oklo Natural Nuclear Reactors U S Department of Energy Office of Civilian Radioactive Waste Management Yucca Mountain Project DOE YMP 0010 November 2004 Archived from the original on 2009 08 25 Retrieved 2009 09 15 a b Gore Al 2009 Our Choice A Plan to Solve the Climate Crisis Emmaus PA Rodale pp 165 166 ISBN 978 1 59486 734 7 Muller Richard A Finsterle Stefan Grimsich John Baltzer Rod Muller Elizabeth A Rector James W Payer Joe Apps John May 29 2019 Disposal of High Level Nuclear Waste in Deep Horizontal Drillholes Energies 12 11 2052 doi 10 3390 en12112052 Mallants Dirk Travis Karl Chapman Neil Brady Patrick V Griffiths Hefin February 14 2020 The State of the Science and Technology in Deep Borehole Disposal of Nuclear Waste Energies 13 4 833 doi 10 3390 en13040833 A Nuclear Power Renaissance Scientific American 2008 04 28 Archived from the original on 2017 05 25 Retrieved 2008 05 15 von Hippel Frank N April 2008 Nuclear Fuel Recycling More Trouble Than It s Worth Scientific American Retrieved 2008 05 15 Licence granted for Finnish used fuel repository World Nuclear News 2015 11 12 Retrieved 2018 11 18 Poinssot Ch Bourg S Ouvrier N Combernoux N Rostaing C Vargas Gonzalez M Bruno J May 2014 Assessment of the environmental footprint of nuclear energy systems Comparison between closed and open fuel cycles Energy 69 199 211 doi 10 1016 j energy 2014 02 069 a b c R Stephen Berry and George S Tolley Nuclear Fuel Reprocessing Archived 2017 05 25 at the Wayback Machine The University of Chicago 2013 Fairley Peter February 2007 Nuclear Wasteland IEEE Spectrum a b Processing of Used Nuclear Fuel World Nuclear Association 2018 Retrieved 2018 12 26 Campbell D O Gift E H 1978 Proliferation resistant nuclear fuel cycles Spiking of plutonium with sup 238 Pu doi 10 2172 6743129 OSTI 6743129 a href Template Cite journal html title Template Cite journal cite journal a Cite journal requires journal help Fedorov M I Dyachenko A I Balagurov N A Artisyuk V V 2015 Formation of proliferation resistant nuclear fuel supplies based on reprocessed uranium for Russian nuclear technologies recipient countries Nuclear Energy and Technology 1 2 111 116 doi 10 1016 j nucet 2015 11 023 Lloyd Cody Goddard Braden 2018 Proliferation resistant plutonium An updated analysis Nuclear Engineering and Design 330 297 302 doi 10 1016 j nucengdes 2018 02 012 a b Harold Feiveson et al 2011 Managing nuclear spent fuel Policy lessons from a 10 country study Bulletin of the Atomic Scientists Kok Kenneth D 2010 Nuclear Engineering Handbook CRC Press p 332 ISBN 978 1 4200 5391 3 Emmanuel Jarry 6 May 2015 Crisis for Areva s plant as clients shun nuclear Moneyweb Reuters Archived from the original on 23 July 2015 Retrieved 6 May 2015 David S 2005 Future Scenarios for Fission Based Reactors Nuclear Physics A 751 429 441 Bibcode 2005NuPhA 751 429D doi 10 1016 j nuclphysa 2005 02 014 Brundtland Gro Harlem 20 March 1987 Chapter 7 Energy Choices for Environment and Development Our Common Future Report of the World Commission on Environment and Development Oslo Retrieved 27 March 2013 Today s primary sources of energy are mainly non renewable natural gas oil coal peat and conventional nuclear power There are also renewable sources including wood plants dung falling water geothermal sources solar tidal wind and wave energy as well as human and animal muscle power Nuclear reactors that produce their own fuel breeders and eventually fusion reactors are also in this category John McCarthy 2006 Facts From Cohen and Others Progress and its Sustainability Stanford Archived from the original on 2007 04 10 Retrieved 2006 11 09 Citing Cohen Bernard L January 1983 Breeder reactors A renewable energy source American Journal of Physics 51 1 75 76 Bibcode 1983AmJPh 51 75C doi 10 1119 1 13440 S2CID 119587950 Advanced Nuclear Power Reactors Information and Issue Briefs World Nuclear Association 2006 Archived from the original on 2010 06 15 Retrieved 2006 11 09 Synergy between Fast Reactors and Thermal Breeders for Safe Clean and Sustainable Nuclear Power PDF World Energy Council Archived from the original PDF on 2011 01 10 Rebecca Kessler Are Fast Breeder Reactors A Nuclear Power Panacea by Fred Pearce Yale Environment 360 E360 yale edu Retrieved 2013 06 14 a b Fast Neutron Reactors FBR World Nuclear Association www world nuclear org Retrieved 7 October 2018 Prototype fast breeder reactor to be commissioned in two months IGCAR director The Times of India Retrieved 28 August 2018 India s breeder reactor to be commissioned in 2013 Hindustan Times Archived from the original on 2013 04 26 Retrieved 2013 06 14 a b c Thorium Information and Issue Briefs World Nuclear Association 2006 Archived from the original on 2013 02 16 Retrieved 2006 11 09 Invernizzi Diletta Colette Locatelli Giorgio Velenturf Anne Love Peter ED Purnell Phil Brookes Naomi J 2020 09 01 Developing policies for the end of life of energy infrastructure Coming to terms with the challenges of decommissioning Energy Policy 144 111677 doi 10 1016 j enpol 2020 111677 ISSN 0301 4215 Decommissioning of nuclear installations www iaea org 17 October 2016 Retrieved 19 April 2021 Invernizzi Diletta Colette Locatelli Giorgio Brookes Naomi J 2017 08 01 How benchmarking can support the selection planning and delivery of nuclear decommissioning projects PDF Progress in Nuclear Energy 99 155 164 doi 10 1016 j pnucene 2017 05 002 Backgrounder on Decommissioning Nuclear Power Plants United States Nuclear Regulatory Commission Retrieved 27 August 2021 Before a nuclear power plant begins operations the licensee must establish or obtain a financial mechanism such as a trust fund or a guarantee from its parent company to ensure there will be sufficient money to pay for the ultimate decommissioning of the facility Share of electricity production from nuclear Our World in Data Retrieved 18 October 2020 Data amp Statistics International Energy Agency Retrieved 2021 11 25 World gross electricity production by source 2019 Charts Data amp Statistics International Energy Agency Retrieved 2021 11 25 Steep decline in nuclear power would threaten energy security and climate goals International Energy Agency 2019 05 28 Retrieved 2019 07 08 Armaroli Nicola Balzani Vincenzo 2011 Towards an electricity powered world Energy and Environmental Science 4 9 3193 3222 3200 doi 10 1039 c1ee01249e S2CID 1752800 REN 21 Renewables 2014 Global Status Report PDF Butler Nick 3 September 2018 The challenge for nuclear is to recover its competitive edge Financial Times Archived from the original on 2022 12 10 Retrieved 9 September 2018 World Nuclear Power Reactors amp Uranium Requirements World Nuclear Association Retrieved 2022 04 18 What s the Lifespan for a Nuclear Reactor Much Longer Than You Might Think Energy gov Retrieved 2020 06 09 Under Construction Reactors International Atomic Energy Agency Retrieved 2019 12 15 EU energy in figures European Commission 2020 p 94 ISBN 9789276194439 Retrieved 2021 01 09 Apt Jay Keith David W Morgan M Granger January 1 1970 Promoting Low Carbon Electricity Production Archived from the original on September 27 2013 The European Strategic Energy Technology Plan SET Plan Towards a low carbon future 2010 PDF p 6 Archived from the original PDF on 2014 02 11 Retrieved 2015 08 17 What is Nuclear Power Plant How Nuclear Power Plants work What is Nuclear Power Reactor Types of Nuclear Power Reactors EngineersGarage Archived from the original on 2013 10 04 Retrieved 2013 06 14 Magdi Ragheb Naval Nuclear Propulsion PDF Archived from the original PDF on 2015 02 26 Retrieved 2015 06 04 As of 2001 about 235 naval reactors had been built Nuclear Icebreaker Lenin Bellona 2003 06 20 Archived from the original on October 15 2007 Retrieved 2007 11 01 Non electric Applications of Nuclear Power Seawater Desalination Hydrogen Production and other Industrial Applications International Atomic Energy Agency 2007 ISBN 978 92 0 108808 6 Retrieved 21 August 2018 What s behind the red hot uranium boom CNN 19 April 2007 Synapse Energy www synapse energy com Retrieved 2020 12 29 Lovering Jessica R Yip Arthur Nordhaus Ted 2016 Historical construction costs of global nuclear power reactors Energy Policy 91 371 382 doi 10 1016 j enpol 2016 01 011 Ed Crooks 2010 09 12 Nuclear New dawn now seems limited to the east Financial Times Archived from the original on 2022 12 10 Retrieved 2010 09 12 The Future of Nuclear Power Massachusetts Institute of Technology 2003 ISBN 978 0 615 12420 9 Retrieved 2006 11 10 a b c Projected Costs of Generating Electricity 2020 International Energy Agency amp OECD Nuclear Energy Agency Retrieved 12 December 2020 Update of the MIT 2003 Future of Nuclear Power PDF Massachusetts Institute of Technology 2009 Retrieved 21 August 2018 Splitting the cost The Economist 12 November 2009 Retrieved 21 August 2018 Nuclear power s reliability is dropping as extreme weather increases Ars Technica 24 July 2021 Retrieved 24 November 2021 Ahmad Ali July 2021 Increase in frequency of nuclear power outages due to changing climate Nature Energy 6 7 755 762 Bibcode 2021NatEn 6 755A doi 10 1038 s41560 021 00849 y ISSN 2058 7546 S2CID 237818619 The Canadian Nuclear FAQ Section A CANDU Technology Archived from the original on 2013 11 01 Retrieved 2019 08 05 A Lokhov Load following with nuclear power plants PDF Indian reactor breaks operating record World Nuclear News 25 October 2018 Indian Designed Nuclear Reactor Breaks Record for Continuous Operation POWER Magazine 1 February 2019 Retrieved 28 March 2019 a b Justin McCurry 30 January 2017 Possible nuclear fuel find raises hopes of Fukushima plant breakthrough The Guardian Retrieved 3 February 2017 Gardner Timothy 13 September 2021 Illinois approves 700 million in subsidies to Exelon prevents nuclear plant closures Reuters Retrieved 28 November 2021 a b Europe faces 253bn nuclear waste bill The Guardian 4 April 2016 Retrieved 24 November 2021 Wade Will 14 June 2019 Americans are paying more than ever to store deadly nuclear waste Los Angeles Times Retrieved 28 November 2021 The World Nuclear Waste Report 2019 PDF Retrieved 28 November 2021 Energy Subsidies World Nuclear Association 2018 a b c Nuclear Reactors for Space World Nuclear Association world nuclear org Retrieved 17 April 2021 Patel Prachi Nuclear Powered Rockets Get a Second Look for Travel to Mars IEEE Spectrum Retrieved 17 April 2021 a b Deitrich L W Basic principles of nuclear safety PDF International Atomic Energy Agency Retrieved 2018 11 18 Emergency core cooling systems ECCS United States Nuclear Regulatory Commission 2018 07 06 Retrieved 2018 12 10 What are the safest sources of energy Our World in Data Retrieved 2020 05 27 a b Dr MacKay Sustainable Energy without the hot air Data from studies by the Paul Scherrer Institute including non EU data p 168 Retrieved 2012 09 15 Brendan Nicholson 2006 06 05 Nuclear power cheaper safer than coal and gas The Age Melbourne Retrieved 2008 01 18 a b Markandya A Wilkinson P 2007 Electricity generation and health Lancet 370 9591 979 990 doi 10 1016 S0140 6736 07 61253 7 PMID 17876910 S2CID 25504602 Nuclear power has lower electricity related health risks than Coal Oil amp gas the health burdens are appreciably smaller for generation from natural gas and lower still for nuclear power This study includes the latent or indirect fatalities for example those caused by the inhalation of fossil fuel created particulate matter smog induced cardiopulmonary events black lung etc in its comparison Nuclear Power Prevents More Deaths Than It Causes Chemical amp Engineering News Cen acs org Retrieved 2014 01 24 a b c Kharecha Pushker A Hansen James E 2013 Prevented Mortality and Greenhouse Gas Emissions from Historical and Projected Nuclear Power Environmental Science amp Technology 47 9 4889 4895 Bibcode 2013EnST 47 4889K doi 10 1021 es3051197 PMID 23495839 Dennis Normile 2012 07 27 Is Nuclear Power Good for You Science 337 6093 395 doi 10 1126 science 337 6093 395 b Archived from the original on 2013 03 01 Hasegawa Arifumi Tanigawa Koichi Ohtsuru Akira Yabe Hirooki Maeda Masaharu Shigemura Jun Ohira Tetsuya Tominaga Takako Akashi Makoto Hirohashi Nobuyuki Ishikawa Tetsuo Kamiya Kenji Shibuya Kenji Yamashita Shunichi Chhem Rethy K August 2015 Health effects of radiation and other health problems in the aftermath of nuclear accidents with an emphasis on Fukushima PDF The Lancet 386 9992 479 488 doi 10 1016 S0140 6736 15 61106 0 PMID 26251393 S2CID 19289052 Andrew C Revkin 2012 03 10 Nuclear Risk and Fear from Hiroshima to Fukushima The New York Times Frank N von Hippel September October 2011 The radiological and psychological consequences of the Fukushima Daiichi accident Bulletin of the Atomic Scientists 67 5 27 36 Bibcode 2011BuAtS 67e 27V doi 10 1177 0096340211421588 S2CID 218769799 Tomoko Yamazaki amp Shunichi Ozasa 2011 06 27 Fukushima Retiree Leads Anti Nuclear Shareholders at Tepco Annual Meeting Bloomberg Mari Saito 2011 05 07 Japan anti nuclear protesters rally after PM call to close plant Reuters IDO 19313 Additional Analysis of the SL 1 Excursion Archived 2011 09 27 at the Wayback Machine Final Report of Progress July through October 1962 November 21 1962 Flight Propulsion Laboratory Department General Electric Company Idaho Falls Idaho U S Atomic Energy Commission Division of Technical Information McKeown William 2003 Idaho Falls The Untold Story of America s First Nuclear Accident Toronto ECW Press ISBN 978 1 55022 562 4 Johnston Robert 2007 09 23 Deadliest radiation accidents and other events causing radiation casualties Database of Radiological Incidents and Related Events Richard Schiffman 2013 03 12 Two years on America hasn t learned lessons of Fukushima nuclear disaster The Guardian London Martin Fackler 2011 06 01 Report Finds Japan Underestimated Tsunami Danger The New York Times The Worst Nuclear Disasters Time com 2009 03 25 Archived from the original on March 28 2009 Retrieved 2013 06 22 Sovacool B K 2008 The costs of failure A preliminary assessment of major energy accidents 1907 2007 Energy Policy 36 5 1802 1820 doi 10 1016 j enpol 2008 01 040 Burgherr Peter Hirschberg Stefan 10 October 2008 A Comparative Analysis of Accident Risks in Fossil Hydro and Nuclear Energy Chains Human and Ecological Risk Assessment 14 5 947 973 doi 10 1080 10807030802387556 S2CID 110522982 Chernobyl at 25th anniversary Frequently Asked Questions PDF World Health Organisation 23 April 2011 Retrieved 14 April 2012 Assessing the Chernobyl Consequences International Atomic Energy Agency Archived from the original on 30 August 2013 UNSCEAR 2008 Report to the General Assembly Annex D PDF United Nations Scientific Committee on the Effects of Atomic Radiation 2008 UNSCEAR 2008 Report to the General Assembly PDF United Nations Scientific Committee on the Effects of Atomic Radiation 2008 Publications Vienna Convention on Civil Liability for Nuclear Damage International Atomic Energy Agency 27 August 2014 Nuclear Power s Role in Generating Electricity PDF Congressional Budget Office May 2008 Availability of Dam Insurance PDF 1999 Archived from the original PDF on 2016 01 08 Retrieved 2016 09 08 a b Charles D Ferguson amp Frank A Settle 2012 The Future of Nuclear Power in the United States PDF Federation of American Scientists Nuclear Security Five Years After 9 11 U S NRC Retrieved 23 July 2007 Matthew Bunn amp Scott Sagan 2014 A Worst Practices Guide to Insider Threats Lessons from Past Mistakes The American Academy of Arts amp Sciences McFadden Robert D 1971 11 14 Damage Is Put at Millions In Blaze at Con Ed Plant The New York Times ISSN 0362 4331 Retrieved 2020 01 15 Knight Michael 1972 01 30 Mechanic Seized in Indian Pt Fire The New York Times ISSN 0362 4331 Retrieved 2020 01 15 a b c The Bulletin of atomic scientists support the megatons to megawatts program 2008 10 23 Archived from the original on 2011 07 08 Retrieved 2012 09 15 home usec com 2013 05 24 Archived from the original on 2013 06 21 Retrieved 2013 06 14 a b Steven E Miller amp Scott D Sagan Fall 2009 Nuclear power without nuclear proliferation Daedalus 138 4 7 doi 10 1162 daed 2009 138 4 7 S2CID 57568427 Nuclear Power in the World Today World nuclear org Retrieved 2013 06 22 Uranium Enrichment www world nuclear org World Nuclear Association Archived from the original on 2013 07 01 Retrieved 2015 08 12 Sovacool Benjamin 2011 Contesting the Future of Nuclear Power A Critical Global Assessment of Atomic Energy Hackensack NJ World Scientific p 190 ISBN 978 981 4322 75 1 Megatons to Megawatts Eliminates Equivalent of 10 000 Nuclear Warheads Usec com 2005 09 21 Archived from the original on 2013 04 26 Retrieved 2013 06 22 a b Dawn Stover 2014 02 21 More megatons to megawatts The Bulletin Corley Anne Marie Against Long Odds MIT s Thomas Neff Hatched a Plan to Turn Russian Warheads into American Electricity Future Unclear For Megatons To Megawatts Program All Things Considered NPR 2009 12 05 Retrieved 2013 06 22 Life Cycle Assessment of Electricity Generation Options PDF Retrieved 24 November 2021 Nuclear energy and water use in the columbia river basin PDF Retrieved 24 November 2021 a b c Ramana M V Ahmad Ali 1 June 2016 Wishful thinking and real problems Small modular reactors planning constraints and nuclear power in Jordan Energy Policy 93 236 245 doi 10 1016 j enpol 2016 03 012 ISSN 0301 4215 a b Kyne Dean Bolin Bob July 2016 Emerging Environmental Justice Issues in Nuclear Power and Radioactive Contamination International Journal of Environmental Research and Public Health 13 7 700 doi 10 3390 ijerph13070700 PMC 4962241 PMID 27420080 a b Is nuclear power the answer to climate change World Information Service on Energy Retrieved 1 February 2020 a b c World Nuclear Waste Report Retrieved 25 October 2021 a b Smith Brice Insurmountable Risks The Dangers of Using Nuclear Power to Combat Global Climate Change Institute for Energy and Environmental Research Retrieved 24 November 2021 a b Prăvălie Remus Bandoc Georgeta 1 March 2018 Nuclear energy Between global electricity demand worldwide decarbonisation imperativeness and planetary environmental implications Journal of Environmental Management 209 81 92 doi 10 1016 j jenvman 2017 12 043 ISSN 1095 8630 PMID 29287177 Ahearne John F 2000 Intergenerational Issues Regarding Nuclear Power Nuclear Waste and Nuclear Weapons Risk Analysis 20 6 763 770 doi 10 1111 0272 4332 206070 ISSN 1539 6924 PMID 11314726 S2CID 23395683 a b CoP 26 Statement Don t nuke the Climate Retrieved 24 November 2021 a b c IPCC Working Group III Mitigation of Climate Change Annex III Technology specific cost and performance parameters PDF IPCC 2014 table A III 2 Retrieved 2019 01 19 National Renewable Energy Laboratory NREL 2013 01 24 Nuclear Power Results Life Cycle Assessment Harmonization nrel gov Archived from the original on 2013 07 02 Retrieved 2013 06 22 Collectively life cycle assessment literature shows that nuclear power is similar to other renewable and much lower than fossil fuel in total life cycle GHG emissions Life Cycle Assessment Harmonization Results and Findings Figure 1 NREL Archived from the original on 2017 05 06 Retrieved 2016 09 08 a b IPCC Working Group III Mitigation of Climate Change Annex II Metrics amp Methodology PDF IPCC 2014 section A II 9 3 Retrieved 2019 01 19 World nuclear performance report 2021 World Nuclear Association a b UNSCEAR 2008 Report to the General Assembly PDF United Nations Scientific Committee on the Effects of Atomic Radiation 2008 National Safety Council Nsc org Archived from the original on 12 October 2009 Retrieved 18 June 2013 Why did renewables become so cheap so fast James J MacKenzie December 1977 Review of The Nuclear Power Controversy by Arthur W Murphy The Quarterly Review of Biology 52 4 467 468 doi 10 1086 410301 JSTOR 2823429 U S Energy Legislation May Be Renaissance for Nuclear Power Bloomberg Archived from the original on 2009 06 26 Retrieved 2017 03 10 Patterson Thom 2013 11 03 Climate change warriors It s time to go nuclear CNN Renewable Energy and Electricity World Nuclear Association June 2010 Retrieved 2010 07 04 Climate Retrieved 18 February 2022 Radioactive Waste Management February 2022 M King Hubbert June 1956 Nuclear Energy and the Fossil Fuels Drilling and Production Practice PDF API p 36 Archived from the original PDF on 2008 05 27 Retrieved 2008 04 18 Bennett James E Tamura Wicks Helen Parks Robbie M Burnett Richard T Pope C Arden Bechle Matthew J Marshall Julian D Danaei Goodarz Ezzati Majid 23 July 2019 Particulate matter air pollution and national and county life expectancy loss in the USA A spatiotemporal analysis PLOS Medicine 16 7 e1002856 doi 10 1371 journal pmed 1002856 PMC 6650052 PMID 31335874 Nuclear Power and Energy Independence 22 October 2008 Climate Retrieved 18 February 2022 Spencer R Weart 2012 The Rise of Nuclear Fear Harvard University Press Sturgis Sue Investigation Revelations about Three Mile Island disaster raise doubts over nuclear plant safety Institute for Southern Studies Archived from the original on 2010 04 18 Retrieved 2010 08 24 Energy Revolution A Sustainable World Energy Outlook PDF Greenpeace International and European Renewable Energy Council January 2007 p 7 Archived from the original PDF on 2009 08 06 Retrieved 2010 02 28 Giugni Marco 2004 Social protest and policy change ecology antinuclear and peace movements in comparative perspective Lanham Rowman amp Littlefield p 44 ISBN 978 0742518261 Sovacool Benjamin K 2008 The costs of failure A preliminary assessment of major energy accidents 1907 2007 Energy Policy 36 5 1802 1820 doi 10 1016 j enpol 2008 01 040 Cooke Stephanie 2009 In Mortal Hands A Cautionary History of the Nuclear Age New York Bloomsbury p 280 ISBN 978 1 59691 617 3 Rodriguez C Baxter A McEachern D Fikani M Venneri F 1 June 2003 Deep Burn making nuclear waste transmutation practical Nuclear Engineering and Design 222 2 299 317 doi 10 1016 S0029 5493 03 00034 7 ISSN 0029 5493 Geissmann Thomas Ponta Oriana 1 April 2017 A probabilistic approach to the computation of the levelized cost of electricity Energy 124 372 381 doi 10 1016 j energy 2017 02 078 ISSN 0360 5442 a b c Ramana M V Mian Zia 1 June 2014 One size doesn t fit all Social priorities and technical conflicts for small modular reactors Energy Research amp Social Science 2 115 124 doi 10 1016 j erss 2014 04 015 ISSN 2214 6296 Meckling Jonas 1 March 2019 Governing renewables Policy feedback in a global energy transition Environment and Planning C Politics and Space 37 2 317 338 doi 10 1177 2399654418777765 ISSN 2399 6544 S2CID 169975439 Decommissioning a Nuclear Power Plant 2007 4 20 U S Nuclear Regulatory Commission Retrieved 2007 6 12 Decommissioning at Chernobyl World nuclear news org 2007 04 26 Archived from the original on 2010 08 23 Retrieved 2015 11 01 Wealer B Bauer S Hirschhausen C v Kemfert C Goke L 1 June 2021 Investing into third generation nuclear power plants Review of recent trends and analysis of future investments using Monte Carlo Simulation Renewable and Sustainable Energy Reviews 143 110836 doi 10 1016 j rser 2021 110836 ISSN 1364 0321 a, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.