fbpx
Wikipedia

Heawood conjecture

In graph theory, the Heawood conjecture or Ringel–Youngs theorem gives a lower bound for the number of colors that are necessary for graph coloring on a surface of a given genus. For surfaces of genus 0, 1, 2, 3, 4, 5, 6, 7, ..., the required number of colors is 4, 7, 8, 9, 10, 11, 12, 12, .... OEISA000934, the chromatic number or Heawood number.

A radially symmetric 7-colored torus – regions of the same colour wrap around along dotted lines
An 8-coloured double torus (genus-two surface) – bubbles denotes unique combinations of two regions
A 6-colored Klein bottle, the only exception to the Heawood conjecture

The conjecture was formulated in 1890 by Percy John Heawood and proven in 1968 by Gerhard Ringel and Ted Youngs. One case, the non-orientable Klein bottle, proved an exception to the general formula. An entirely different approach was needed for the much older problem of finding the number of colors needed for the plane or sphere, solved in 1976 as the four color theorem by Haken and Appel. On the sphere the lower bound is easy, whereas for higher genera the upper bound is easy and was proved in Heawood's original short paper that contained the conjecture. In other words, Ringel, Youngs and others had to construct extreme examples for every genus g = 1,2,3,.... If g = 12s + k, the genera fall into 12 cases according as k = 0,1,2,3,4,5,6,7,8,9,10,11. To simplify, suppose that case k has been established if only a finite number of g's of the form 12s + k are in doubt. Then the years in which the twelve cases were settled and by whom are the following:

  • 1954, Ringel: case 5
  • 1961, Ringel: cases 3,7,10
  • 1963, Terry, Welch, Youngs: cases 0,4
  • 1964, Gustin, Youngs: case 1
  • 1965, Gustin: case 9
  • 1966, Youngs: case 6
  • 1967, Ringel, Youngs: cases 2,8,11

The last seven sporadic exceptions were settled as follows:

  • 1967, Mayer: cases 18, 20, 23
  • 1968, Ringel, Youngs: cases 30, 35, 47, 59, and the conjecture was proved.

Formal statement

Percy John Heawood conjectured in 1890 that for a given genus g > 0, the minimum number of colors necessary to color all graphs drawn on an orientable surface of that genus (or equivalently to color the regions of any partition of the surface into simply connected regions) is given by

 

where   is the floor function.

Replacing the genus by the Euler characteristic, we obtain a formula that covers both the orientable and non-orientable cases,

 

This relation holds, as Ringel and Youngs showed, for all surfaces except for the Klein bottle. Philip Franklin (1930) proved that the Klein bottle requires at most 6 colors, rather than 7 as predicted by the formula. The Franklin graph can be drawn on the Klein bottle in a way that forms six mutually-adjacent regions, showing that this bound is tight.

The upper bound, proved in Heawood's original short paper, is based on a greedy coloring algorithm. By manipulating the Euler characteristic, one can show that every graph embedded in the given surface must have at least one vertex of degree less than the given bound. If one removes this vertex, and colors the rest of the graph, the small number of edges incident to the removed vertex ensures that it can be added back to the graph and colored without increasing the needed number of colors beyond the bound. In the other direction, the proof is more difficult, and involves showing that in each case (except the Klein bottle) a complete graph with a number of vertices equal to the given number of colors can be embedded on the surface.

Example

 
A partition of the torus into seven mutually adjacent regions, requiring seven colors.

The torus has g = 1, so χ = 0. Therefore, as the formula states, any subdivision of the torus into regions can be colored using at most seven colors. The illustration shows a subdivision of the torus in which each of seven regions are adjacent to each other region; this subdivision shows that the bound of seven on the number of colors is tight for this case. The boundary of this subdivision forms an embedding of the Heawood graph onto the torus.

 
Interactive Szilassi polyhedron model with each of 7 faces adjacent to every other. In the SVG image, move the mouse to rotate it.[1]

References

  1. ^ Grünbaum, Branko; Szilassi, Lajos (2009), "Geometric Realizations of Special Toroidal Complexes", Contributions to Discrete Mathematics, 4 (1): 21–39, doi:10.11575/cdm.v4i1.61986, ISSN 1715-0868

External links

heawood, conjecture, graph, theory, ringel, youngs, theorem, gives, lower, bound, number, colors, that, necessary, graph, coloring, surface, given, genus, surfaces, genus, required, number, colors, oeis, a000934, chromatic, number, heawood, number, radially, s. In graph theory the Heawood conjecture or Ringel Youngs theorem gives a lower bound for the number of colors that are necessary for graph coloring on a surface of a given genus For surfaces of genus 0 1 2 3 4 5 6 7 the required number of colors is 4 7 8 9 10 11 12 12 OEIS A000934 the chromatic number or Heawood number A radially symmetric 7 colored torus regions of the same colour wrap around along dotted lines An 8 coloured double torus genus two surface bubbles denotes unique combinations of two regions A 6 colored Klein bottle the only exception to the Heawood conjecture The conjecture was formulated in 1890 by Percy John Heawood and proven in 1968 by Gerhard Ringel and Ted Youngs One case the non orientable Klein bottle proved an exception to the general formula An entirely different approach was needed for the much older problem of finding the number of colors needed for the plane or sphere solved in 1976 as the four color theorem by Haken and Appel On the sphere the lower bound is easy whereas for higher genera the upper bound is easy and was proved in Heawood s original short paper that contained the conjecture In other words Ringel Youngs and others had to construct extreme examples for every genus g 1 2 3 If g 12s k the genera fall into 12 cases according as k 0 1 2 3 4 5 6 7 8 9 10 11 To simplify suppose that case k has been established if only a finite number of g s of the form 12s k are in doubt Then the years in which the twelve cases were settled and by whom are the following 1954 Ringel case 5 1961 Ringel cases 3 7 10 1963 Terry Welch Youngs cases 0 4 1964 Gustin Youngs case 1 1965 Gustin case 9 1966 Youngs case 6 1967 Ringel Youngs cases 2 8 11The last seven sporadic exceptions were settled as follows 1967 Mayer cases 18 20 23 1968 Ringel Youngs cases 30 35 47 59 and the conjecture was proved Contents 1 Formal statement 2 Example 3 References 4 External linksFormal statement Edit The Franklin graph Percy John Heawood conjectured in 1890 that for a given genus g gt 0 the minimum number of colors necessary to color all graphs drawn on an orientable surface of that genus or equivalently to color the regions of any partition of the surface into simply connected regions is given by g g 7 1 48 g 2 displaystyle gamma g left lfloor frac 7 sqrt 1 48g 2 right rfloor where x displaystyle left lfloor x right rfloor is the floor function Replacing the genus by the Euler characteristic we obtain a formula that covers both the orientable and non orientable cases g x 7 49 24 x 2 displaystyle gamma chi left lfloor frac 7 sqrt 49 24 chi 2 right rfloor This relation holds as Ringel and Youngs showed for all surfaces except for the Klein bottle Philip Franklin 1930 proved that the Klein bottle requires at most 6 colors rather than 7 as predicted by the formula The Franklin graph can be drawn on the Klein bottle in a way that forms six mutually adjacent regions showing that this bound is tight The upper bound proved in Heawood s original short paper is based on a greedy coloring algorithm By manipulating the Euler characteristic one can show that every graph embedded in the given surface must have at least one vertex of degree less than the given bound If one removes this vertex and colors the rest of the graph the small number of edges incident to the removed vertex ensures that it can be added back to the graph and colored without increasing the needed number of colors beyond the bound In the other direction the proof is more difficult and involves showing that in each case except the Klein bottle a complete graph with a number of vertices equal to the given number of colors can be embedded on the surface Example Edit A partition of the torus into seven mutually adjacent regions requiring seven colors The torus has g 1 so x 0 Therefore as the formula states any subdivision of the torus into regions can be colored using at most seven colors The illustration shows a subdivision of the torus in which each of seven regions are adjacent to each other region this subdivision shows that the bound of seven on the number of colors is tight for this case The boundary of this subdivision forms an embedding of the Heawood graph onto the torus Interactive Szilassi polyhedron model with each of 7 faces adjacent to every other In the SVG image move the mouse to rotate it 1 References Edit Grunbaum Branko Szilassi Lajos 2009 Geometric Realizations of Special Toroidal Complexes Contributions to Discrete Mathematics 4 1 21 39 doi 10 11575 cdm v4i1 61986 ISSN 1715 0868 Franklin P 1934 A six color problem MIT Journal of Mathematics and Physics 13 1 4 363 379 doi 10 1002 sapm1934131363 hdl 2027 mdp 39015019892200 Heawood P J 1890 Map colour theorem Quarterly Journal of Mathematics 24 332 338 Ringel G Youngs J W T 1968 Solution of the Heawood map coloring problem Proceedings of the National Academy of Sciences of the United States of America 60 2 438 445 Bibcode 1968PNAS 60 438R doi 10 1073 pnas 60 2 438 MR 0228378 PMC 225066 PMID 16591648 External links EditWeisstein Eric W Heawood Conjecture MathWorld Retrieved from https en wikipedia org w index php title Heawood conjecture amp oldid 1050460378, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.