fbpx
Wikipedia

Computer science

Computer science is the study of computation, information, and automation.[1][2][3] Computer science spans theoretical disciplines (such as algorithms, theory of computation, and information theory) to applied disciplines (including the design and implementation of hardware and software).[4][5][6] Though more often considered an academic discipline, computer science is closely related to computer programming.[7]

Algorithms and data structures are central to computer science.[8] The theory of computation concerns abstract models of computation and general classes of problems that can be solved using them. The fields of cryptography and computer security involve studying the means for secure communication and for preventing security vulnerabilities. Computer graphics and computational geometry address the generation of images. Programming language theory considers different ways to describe computational processes, and database theory concerns the management of repositories of data. Human–computer interaction investigates the interfaces through which humans and computers interact, and software engineering focuses on the design and principles behind developing software. Areas such as operating systems, networks and embedded systems investigate the principles and design behind complex systems. Computer architecture describes the construction of computer components and computer-operated equipment. Artificial intelligence and machine learning aim to synthesize goal-orientated processes such as problem-solving, decision-making, environmental adaptation, planning and learning found in humans and animals. Within artificial intelligence, computer vision aims to understand and process image and video data, while natural language processing aims to understand and process textual and linguistic data.

The fundamental concern of computer science is determining what can and cannot be automated.[2][9][3][10][11] The Turing Award is generally recognized as the highest distinction in computer science.[12][13]

History

 
Gottfried Wilhelm Leibniz (1646–1716) developed logic in a binary number system and has been called the "founder of computer science".[14]
 
Charles Babbage is sometimes referred to as the "father of computing".[15]
 
Ada Lovelace published the first algorithm intended for processing on a computer.[16]

The earliest foundations of what would become computer science predate the invention of the modern digital computer. Machines for calculating fixed numerical tasks such as the abacus have existed since antiquity, aiding in computations such as multiplication and division. Algorithms for performing computations have existed since antiquity, even before the development of sophisticated computing equipment.[17]

Wilhelm Schickard designed and constructed the first working mechanical calculator in 1623.[18] In 1673, Gottfried Leibniz demonstrated a digital mechanical calculator, called the Stepped Reckoner.[19] Leibniz may be considered the first computer scientist and information theorist, because of various reasons, including the fact that he documented the binary number system. In 1820, Thomas de Colmar launched the mechanical calculator industry[note 1] when he invented his simplified arithmometer, the first calculating machine strong enough and reliable enough to be used daily in an office environment. Charles Babbage started the design of the first automatic mechanical calculator, his Difference Engine, in 1822, which eventually gave him the idea of the first programmable mechanical calculator, his Analytical Engine.[20] He started developing this machine in 1834, and "in less than two years, he had sketched out many of the salient features of the modern computer".[21] "A crucial step was the adoption of a punched card system derived from the Jacquard loom"[21] making it infinitely programmable.[note 2] In 1843, during the translation of a French article on the Analytical Engine, Ada Lovelace wrote, in one of the many notes she included, an algorithm to compute the Bernoulli numbers, which is considered to be the first published algorithm ever specifically tailored for implementation on a computer.[22] Around 1885, Herman Hollerith invented the tabulator, which used punched cards to process statistical information; eventually his company became part of IBM. Following Babbage, although unaware of his earlier work, Percy Ludgate in 1909 published[23] the 2nd of the only two designs for mechanical analytical engines in history. In 1914, the Spanish engineer Leonardo Torres Quevedo published his Essays on Automatics,[24] and designed, inspired by Babbage, a theoretical electromechanical calculating machine which was to be controlled by a read-only program. The paper also introduced the idea of floating-point arithmetic.[25][26] In 1920, to celebrate the 100th anniversary of the invention of the arithmometer, Torres presented in Paris the Electromechanical Arithmometer, a prototype that demonstrated the feasibility of an electromechanical analytical engine,[27] on which commands could be typed and the results printed automatically.[28] In 1937, one hundred years after Babbage's impossible dream, Howard Aiken convinced IBM, which was making all kinds of punched card equipment and was also in the calculator business[29] to develop his giant programmable calculator, the ASCC/Harvard Mark I, based on Babbage's Analytical Engine, which itself used cards and a central computing unit. When the machine was finished, some hailed it as "Babbage's dream come true".[30]

During the 1940s, with the development of new and more powerful computing machines such as the Atanasoff–Berry computer and ENIAC, the term computer came to refer to the machines rather than their human predecessors.[31] As it became clear that computers could be used for more than just mathematical calculations, the field of computer science broadened to study computation in general. In 1945, IBM founded the Watson Scientific Computing Laboratory at Columbia University in New York City. The renovated fraternity house on Manhattan's West Side was IBM's first laboratory devoted to pure science. The lab is the forerunner of IBM's Research Division, which today operates research facilities around the world.[32] Ultimately, the close relationship between IBM and Columbia University was instrumental in the emergence of a new scientific discipline, with Columbia offering one of the first academic-credit courses in computer science in 1946.[33] Computer science began to be established as a distinct academic discipline in the 1950s and early 1960s.[7][34] The world's first computer science degree program, the Cambridge Diploma in Computer Science, began at the University of Cambridge Computer Laboratory in 1953. The first computer science department in the United States was formed at Purdue University in 1962.[35] Since practical computers became available, many applications of computing have become distinct areas of study in their own rights.

Etymology and scope

Although first proposed in 1956,[36] the term "computer science" appears in a 1959 article in Communications of the ACM,[37] in which Louis Fein argues for the creation of a Graduate School in Computer Sciences analogous to the creation of Harvard Business School in 1921.[38] Louis justifies the name by arguing that, like management science, the subject is applied and interdisciplinary in nature, while having the characteristics typical of an academic discipline.[37] His efforts, and those of others such as numerical analyst George Forsythe, were rewarded: universities went on to create such departments, starting with Purdue in 1962.[39] Despite its name, a significant amount of computer science does not involve the study of computers themselves. Because of this, several alternative names have been proposed.[40] Certain departments of major universities prefer the term computing science, to emphasize precisely that difference. Danish scientist Peter Naur suggested the term datalogy,[41] to reflect the fact that the scientific discipline revolves around data and data treatment, while not necessarily involving computers. The first scientific institution to use the term was the Department of Datalogy at the University of Copenhagen, founded in 1969, with Peter Naur being the first professor in datalogy. The term is used mainly in the Scandinavian countries. An alternative term, also proposed by Naur, is data science; this is now used for a multi-disciplinary field of data analysis, including statistics and databases.

In the early days of computing, a number of terms for the practitioners of the field of computing were suggested in the Communications of the ACMturingineer, turologist, flow-charts-man, applied meta-mathematician, and applied epistemologist.[42] Three months later in the same journal, comptologist was suggested, followed next year by hypologist.[43] The term computics has also been suggested.[44] In Europe, terms derived from contracted translations of the expression "automatic information" (e.g. "informazione automatica" in Italian) or "information and mathematics" are often used, e.g. informatique (French), Informatik (German), informatica (Italian, Dutch), informática (Spanish, Portuguese), informatika (Slavic languages and Hungarian) or pliroforiki (πληροφορική, which means informatics) in Greek. Similar words have also been adopted in the UK (as in the School of Informatics, University of Edinburgh).[45] "In the U.S., however, informatics is linked with applied computing, or computing in the context of another domain."[46]

A folkloric quotation, often attributed to—but almost certainly not first formulated by—Edsger Dijkstra, states that "computer science is no more about computers than astronomy is about telescopes."[note 3] The design and deployment of computers and computer systems is generally considered the province of disciplines other than computer science. For example, the study of computer hardware is usually considered part of computer engineering, while the study of commercial computer systems and their deployment is often called information technology or information systems. However, there has been exchange of ideas between the various computer-related disciplines. Computer science research also often intersects other disciplines, such as cognitive science, linguistics, mathematics, physics, biology, Earth science, statistics, philosophy, and logic.

Computer science is considered by some to have a much closer relationship with mathematics than many scientific disciplines, with some observers saying that computing is a mathematical science.[7] Early computer science was strongly influenced by the work of mathematicians such as Kurt Gödel, Alan Turing, John von Neumann, Rózsa Péter and Alonzo Church and there continues to be a useful interchange of ideas between the two fields in areas such as mathematical logic, category theory, domain theory, and algebra.[36]

The relationship between computer science and software engineering is a contentious issue, which is further muddied by disputes over what the term "software engineering" means, and how computer science is defined.[47] David Parnas, taking a cue from the relationship between other engineering and science disciplines, has claimed that the principal focus of computer science is studying the properties of computation in general, while the principal focus of software engineering is the design of specific computations to achieve practical goals, making the two separate but complementary disciplines.[48]

The academic, political, and funding aspects of computer science tend to depend on whether a department is formed with a mathematical emphasis or with an engineering emphasis. Computer science departments with a mathematics emphasis and with a numerical orientation consider alignment with computational science. Both types of departments tend to make efforts to bridge the field educationally if not across all research.

Philosophy

Epistemology of computer science

Despite the word "science" in its name, there is debate over whether or not computer science is a discipline of science,[49] mathematics,[50] or engineering.[51] Allen Newell and Herbert A. Simon argued in 1975,

Computer science is an empirical discipline. We would have called it an experimental science, but like astronomy, economics, and geology, some of its unique forms of observation and experience do not fit a narrow stereotype of the experimental method. Nonetheless, they are experiments. Each new machine that is built is an experiment. Actually constructing the machine poses a question to nature; and we listen for the answer by observing the machine in operation and analyzing it by all analytical and measurement means available.[51]

It has since been argued that computer science can be classified as an empirical science since it makes use of empirical testing to evaluate the correctness of programs, but a problem remains in defining the laws and theorems of computer science (if any exist) and defining the nature of experiments in computer science.[51] Proponents of classifying computer science as an engineering discipline argue that the reliability of computational systems is investigated in the same way as bridges in civil engineering and airplanes in aerospace engineering.[51] They also argue that while empirical sciences observe what presently exists, computer science observes what is possible to exist and while scientists discover laws from observation, no proper laws have been found in computer science and it is instead concerned with creating phenomena.[51]

Proponents of classifying computer science as a mathematical discipline argue that computer programs are physical realizations of mathematical entities and programs can be deductively reasoned through mathematical formal methods.[51] Computer scientists Edsger W. Dijkstra and Tony Hoare regard instructions for computer programs as mathematical sentences and interpret formal semantics for programming languages as mathematical axiomatic systems.[51]

Paradigms of computer science

A number of computer scientists have argued for the distinction of three separate paradigms in computer science. Peter Wegner argued that those paradigms are science, technology, and mathematics.[52] Peter Denning's working group argued that they are theory, abstraction (modeling), and design.[7] Amnon H. Eden described them as the "rationalist paradigm" (which treats computer science as a branch of mathematics, which is prevalent in theoretical computer science, and mainly employs deductive reasoning), the "technocratic paradigm" (which might be found in engineering approaches, most prominently in software engineering), and the "scientific paradigm" (which approaches computer-related artifacts from the empirical perspective of natural sciences,[53] identifiable in some branches of artificial intelligence).[54] Computer science focuses on methods involved in design, specification, programming, verification, implementation and testing of human-made computing systems.[55]

Fields

As a discipline, computer science spans a range of topics from theoretical studies of algorithms and the limits of computation to the practical issues of implementing computing systems in hardware and software.[56][57]CSAB, formerly called Computing Sciences Accreditation Board—which is made up of representatives of the Association for Computing Machinery (ACM), and the IEEE Computer Society (IEEE CS)[58]—identifies four areas that it considers crucial to the discipline of computer science: theory of computation, algorithms and data structures, programming methodology and languages, and computer elements and architecture. In addition to these four areas, CSAB also identifies fields such as software engineering, artificial intelligence, computer networking and communication, database systems, parallel computation, distributed computation, human–computer interaction, computer graphics, operating systems, and numerical and symbolic computation as being important areas of computer science.[56]

Theoretical computer science

Theoretical Computer Science is mathematical and abstract in spirit, but it derives its motivation from the practical and everyday computation. Its aim is to understand the nature of computation and, as a consequence of this understanding, provide more efficient methodologies.

Theory of computation

According to Peter Denning, the fundamental question underlying computer science is, "What can be automated?"[3] Theory of computation is focused on answering fundamental questions about what can be computed and what amount of resources are required to perform those computations. In an effort to answer the first question, computability theory examines which computational problems are solvable on various theoretical models of computation. The second question is addressed by computational complexity theory, which studies the time and space costs associated with different approaches to solving a multitude of computational problems.

The famous P = NP? problem, one of the Millennium Prize Problems,[59] is an open problem in the theory of computation.

Information and coding theory

Information theory, closely related to probability and statistics, is related to the quantification of information. This was developed by Claude Shannon to find fundamental limits on signal processing operations such as compressing data and on reliably storing and communicating data.[60] Coding theory is the study of the properties of codes (systems for converting information from one form to another) and their fitness for a specific application. Codes are used for data compression, cryptography, error detection and correction, and more recently also for network coding. Codes are studied for the purpose of designing efficient and reliable data transmission methods. [61]

Data structures and algorithms

Data structures and algorithms are the studies of commonly used computational methods and their computational efficiency.

Programming language theory and formal methods

Programming language theory is a branch of computer science that deals with the design, implementation, analysis, characterization, and classification of programming languages and their individual features. It falls within the discipline of computer science, both depending on and affecting mathematics, software engineering, and linguistics. It is an active research area, with numerous dedicated academic journals.

Formal methods are a particular kind of mathematically based technique for the specification, development and verification of software and hardware systems.[62] The use of formal methods for software and hardware design is motivated by the expectation that, as in other engineering disciplines, performing appropriate mathematical analysis can contribute to the reliability and robustness of a design. They form an important theoretical underpinning for software engineering, especially where safety or security is involved. Formal methods are a useful adjunct to software testing since they help avoid errors and can also give a framework for testing. For industrial use, tool support is required. However, the high cost of using formal methods means that they are usually only used in the development of high-integrity and life-critical systems, where safety or security is of utmost importance. Formal methods are best described as the application of a fairly broad variety of theoretical computer science fundamentals, in particular logic calculi, formal languages, automata theory, and program semantics, but also type systems and algebraic data types to problems in software and hardware specification and verification.

           
Formal semantics Type theory Compiler design Programming languages Formal verification Automated theorem proving

Applied computer science

Computer graphics and visualization

Computer graphics is the study of digital visual contents and involves the synthesis and manipulation of image data. The study is connected to many other fields in computer science, including computer vision, image processing, and computational geometry, and is heavily applied in the fields of special effects and video games.

Image and sound processing

Information can take the form of images, sound, video or other multimedia. Bits of information can be streamed via signals. Its processing is the central notion of informatics, the European view on computing, which studies information processing algorithms independently of the type of information carrier – whether it is electrical, mechanical or biological. This field plays important role in information theory, telecommunications, information engineering and has applications in medical image computing and speech synthesis, among others. What is the lower bound on the complexity of fast Fourier transform algorithms? is one of unsolved problems in theoretical computer science.

Computational science, finance and engineering

Scientific computing (or computational science) is the field of study concerned with constructing mathematical models and quantitative analysis techniques and using computers to analyze and solve scientific problems. A major usage of scientific computing is simulation of various processes, including computational fluid dynamics, physical, electrical, and electronic systems and circuits, as well as societies and social situations (notably war games) along with their habitats, among many others. Modern computers enable optimization of such designs as complete aircraft. Notable in electrical and electronic circuit design are SPICE,[63] as well as software for physical realization of new (or modified) designs. The latter includes essential design software for integrated circuits.[64]

Social computing and human–computer interaction

Social computing is an area that is concerned with the intersection of social behavior and computational systems. Human–computer interaction research develops theories, principles, and guidelines for user interface designers.

Software engineering

Software engineering is the study of designing, implementing, and modifying the software in order to ensure it is of high quality, affordable, maintainable, and fast to build. It is a systematic approach to software design, involving the application of engineering practices to software. Software engineering deals with the organizing and analyzing of software—it does not just deal with the creation or manufacture of new software, but its internal arrangement and maintenance. For example software testing, systems engineering, technical debt and software development processes.

Artificial intelligence

Artificial intelligence (AI) aims to or is required to synthesize goal-orientated processes such as problem-solving, decision-making, environmental adaptation, learning, and communication found in humans and animals. From its origins in cybernetics and in the Dartmouth Conference (1956), artificial intelligence research has been necessarily cross-disciplinary, drawing on areas of expertise such as applied mathematics, symbolic logic, semiotics, electrical engineering, philosophy of mind, neurophysiology, and social intelligence. AI is associated in the popular mind with robotic development, but the main field of practical application has been as an embedded component in areas of software development, which require computational understanding. The starting point in the late 1940s was Alan Turing's question "Can computers think?", and the question remains effectively unanswered, although the Turing test is still used to assess computer output on the scale of human intelligence. But the automation of evaluative and predictive tasks has been increasingly successful as a substitute for human monitoring and intervention in domains of computer application involving complex real-world data.

Computer systems

Computer architecture and organization

Computer architecture, or digital computer organization, is the conceptual design and fundamental operational structure of a computer system. It focuses largely on the way by which the central processing unit performs internally and accesses addresses in memory.[65] Computer engineers study computational logic and design of computer hardware, from individual processor components, microcontrollers, personal computers to supercomputers and embedded systems. The term "architecture" in computer literature can be traced to the work of Lyle R. Johnson and Frederick P. Brooks Jr., members of the Machine Organization department in IBM's main research center in 1959.

Concurrent, parallel and distributed computing

Concurrency is a property of systems in which several computations are executing simultaneously, and potentially interacting with each other.[66] A number of mathematical models have been developed for general concurrent computation including Petri nets, process calculi and the Parallel Random Access Machine model.[67] When multiple computers are connected in a network while using concurrency, this is known as a distributed system. Computers within that distributed system have their own private memory, and information can be exchanged to achieve common goals.[68]

Computer networks

This branch of computer science aims to manage networks between computers worldwide.

Computer security and cryptography

Computer security is a branch of computer technology with the objective of protecting information from unauthorized access, disruption, or modification while maintaining the accessibility and usability of the system for its intended users.

Historical cryptography is the art of writing and deciphering secret messages. Modern cryptography is the scientific study of problems relating to distributed computations that can be attacked.[69] Technologies studied in modern cryptography include symmetric and asymmetric encryption, digital signatures, cryptographic hash functions, key-agreement protocols, blockchain, zero-knowledge proofs, and garbled circuits.

Databases and data mining

A database is intended to organize, store, and retrieve large amounts of data easily. Digital databases are managed using database management systems to store, create, maintain, and search data, through database models and query languages. Data mining is a process of discovering patterns in large data sets.

Discoveries

The philosopher of computing Bill Rapaport noted three Great Insights of Computer Science:[70]

All the information about any computable problem can be represented using only 0 and 1 (or any other bistable pair that can flip-flop between two easily distinguishable states, such as "on/off", "magnetized/de-magnetized", "high-voltage/low-voltage", etc.).
  • Alan Turing's insight: there are only five actions that a computer has to perform in order to do "anything".
Every algorithm can be expressed in a language for a computer consisting of only five basic instructions:[71]
  • move left one location;
  • move right one location;
  • read symbol at current location;
  • print 0 at current location;
  • print 1 at current location.
  • Corrado Böhm and Giuseppe Jacopini's insight: there are only three ways of combining these actions (into more complex ones) that are needed in order for a computer to do "anything".[72]
Only three rules are needed to combine any set of basic instructions into more complex ones:
  • sequence: first do this, then do that;
  • selection: IF such-and-such is the case, THEN do this, ELSE do that;
  • repetition: WHILE such-and-such is the case, DO this.
The three rules of Boehm's and Jacopini's insight can be further simplified with the use of goto (which means it is more elementary than structured programming).

Programming paradigms

Programming languages can be used to accomplish different tasks in different ways. Common programming paradigms include:

  • Functional programming, a style of building the structure and elements of computer programs that treats computation as the evaluation of mathematical functions and avoids state and mutable data. It is a declarative programming paradigm, which means programming is done with expressions or declarations instead of statements.[73]
  • Imperative programming, a programming paradigm that uses statements that change a program's state.[74] In much the same way that the imperative mood in natural languages expresses commands, an imperative program consists of commands for the computer to perform. Imperative programming focuses on describing how a program operates.
  • Object-oriented programming, a programming paradigm based on the concept of "objects", which may contain data, in the form of fields, often known as attributes; and code, in the form of procedures, often known as methods. A feature of objects is that an object's procedures can access and often modify the data fields of the object with which they are associated. Thus object-oriented computer programs are made out of objects that interact with one another.[75]
  • Service-oriented programming, a programming paradigm that uses "services" as the unit of computer work, to design and implement integrated business applications and mission critical software programs

Many languages offer support for multiple paradigms, making the distinction more a matter of style than of technical capabilities.[76]

Research

Conferences are important events for computer science research. During these conferences, researchers from the public and private sectors present their recent work and meet. Unlike in most other academic fields, in computer science, the prestige of conference papers is greater than that of journal publications.[77][78] One proposed explanation for this is the quick development of this relatively new field requires rapid review and distribution of results, a task better handled by conferences than by journals.[79]

Education

Computer Science, known by its near synonyms, Computing, Computer Studies, has been taught in UK schools since the days of batch processing, mark sensitive cards and paper tape but usually to a select few students.[80] In 1981, the BBC produced a micro-computer and classroom network and Computer Studies became common for GCE O level students (11–16-year-old), and Computer Science to A level students. Its importance was recognised, and it became a compulsory part of the National Curriculum, for Key Stage 3 & 4. In September 2014 it became an entitlement for all pupils over the age of 4.[81]

In the US, with 14,000 school districts deciding the curriculum, provision was fractured.[82] According to a 2010 report by the Association for Computing Machinery (ACM) and Computer Science Teachers Association (CSTA), only 14 out of 50 states have adopted significant education standards for high school computer science.[83] According to a 2021 report, only 51% of high schools in the US offer computer science.[84]

Israel, New Zealand, and South Korea have included computer science in their national secondary education curricula,[85][86] and several others are following.[87]

See also

Notes

  1. ^ In 1851
  2. ^ "The introduction of punched cards into the new engine was important not only as a more convenient form of control than the drums, or because programs could now be of unlimited extent, and could be stored and repeated without the danger of introducing errors in setting the machine by hand; it was important also because it served to crystallize Babbage's feeling that he had invented something really new, something much more than a sophisticated calculating machine." Bruce Collier, 1970
  3. ^ See the entry "Computer science" on Wikiquote for the history of this quotation.
  4. ^ The word "anything" is written in quotation marks because there are things that computers cannot do. One example is: to answer the question if an arbitrary given computer program will eventually finish or run forever (the Halting problem).

References

  1. ^ "What is Computer Science?". Department of Computer Science, University of York. from the original on June 11, 2020. Retrieved June 11, 2020.
  2. ^ a b What Can Be Automated? Computer Science and Engineering Research Study. Computer Science Series. MIT Press. 1980. ISBN 978-0262010603. from the original on January 9, 2021.
  3. ^ a b c Denning, P.J.; Comer, D.E.; Gries, D.; Mulder, M.C.; Tucker, A.; Turner, A.J.; Young, P.R. (February 1989). "Computing as a discipline". Computer. 22 (2): 63–70. doi:10.1109/2.19833. ISSN 1558-0814. from the original on March 3, 2022. Retrieved March 3, 2022. The discipline of computing is the systematic study of algorithmic processes that describe and transform information, their theory, analysis, design, efficiency, implementation, and application. The fundamental question underlying all of computing is, 'What can be (efficiently) automated?'
  4. ^ "WordNet Search—3.1". WordNet Search. Wordnetweb.princeton.edu. from the original on October 18, 2017. Retrieved May 14, 2012.
  5. ^ "Definition of computer science | Dictionary.com". www.dictionary.com. from the original on June 11, 2020. Retrieved June 11, 2020.
  6. ^ "What is Computer Science? | Undergraduate Computer Science at UMD". undergrad.cs.umd.edu. from the original on November 27, 2020. Retrieved July 15, 2022.
  7. ^ a b c d Denning, P.J.; Comer, D.E.; Gries, D.; Mulder, M.C.; Tucker, A.; Turner, A.J.; Young, P.R. (February 1989). "Computing as a discipline". Computer. 22 (2): 63–70. doi:10.1109/2.19833. ISSN 1558-0814. from the original on March 3, 2022. Retrieved March 3, 2022.
  8. ^ Harel, David (2014). Algorithmics The Spirit of Computing. Springer Berlin. ISBN 978-3-642-44135-6. OCLC 876384882. from the original on June 17, 2020. Retrieved June 17, 2020.
  9. ^ Patton, Richard D.; Patton, Peter C. (2009), Nof, Shimon Y. (ed.), "What Can be Automated? What Cannot be Automated?", Springer Handbook of Automation, Springer Handbooks, Berlin, Heidelberg: Springer, pp. 305–313, doi:10.1007/978-3-540-78831-7_18, ISBN 978-3-540-78831-7, from the original on January 11, 2023, retrieved March 3, 2022
  10. ^ Forsythe, George (August 5–10, 1969). "Computer Science and Education". Proceedings of IFIP Congress 1968. The question 'What can be automated?' is one of the most inspiring philosophical and practical questions of contemporary civilization.
  11. ^ Knuth, Donald E. (August 1, 1972). "George Forsythe and the development of computer science". Communications of the ACM. 15 (8): 721–726. doi:10.1145/361532.361538. ISSN 0001-0782. S2CID 12512057.
  12. ^ Hanson, Vicki L. (January 23, 2017). "Celebrating 50 years of the Turing award". Communications of the ACM. 60 (2): 5. doi:10.1145/3033604. ISSN 0001-0782. S2CID 29984960.
  13. ^ Scott, Eric; Martins, Marcella Scoczynski Ribeiro; Yafrani, Mohamed El; Volz, Vanessa; Wilson, Dennis G (June 5, 2018). "ACM marks 50 years of the ACM A.M. turing award and computing's greatest achievements". ACM SIGEVOlution. 10 (3): 9–11. doi:10.1145/3231560.3231563. S2CID 47021559.
  14. ^ "2021: 375th birthday of Leibniz, father of computer science". people.idsia.ch. from the original on September 21, 2022. Retrieved February 4, 2023.
  15. ^ "Charles Babbage Institute: Who Was Charles Babbage?". cbi.umn.edu. from the original on January 9, 2007. Retrieved December 28, 2016.
  16. ^ "Ada Lovelace | Babbage Engine | Computer History Museum". www.computerhistory.org. from the original on December 25, 2018. Retrieved December 28, 2016.
  17. ^ "History of Computer Science". cs.uwaterloo.ca. from the original on July 29, 2017. Retrieved July 15, 2022.
  18. ^ (PDF) (in German). Archived from the original (PDF) on September 19, 2020. Retrieved December 4, 2016.
  19. ^ Keates, Fiona (June 25, 2012). . The Repository. The Royal Society. Archived from the original on June 29, 2012. Retrieved January 19, 2014.
  20. ^ "Science Museum, Babbage's Analytical Engine, 1834–1871 (Trial model)". from the original on August 30, 2019. Retrieved May 11, 2020.
  21. ^ a b Hyman, Anthony (1982). Charles Babbage: Pioneer of the Computer. Oxford University Press. ISBN 978-0691083032.
  22. ^ . Archived from the original on February 10, 2006. Retrieved May 4, 2006.
  23. ^ (PDF). Archived from the original on April 16, 2019. Retrieved August 8, 2019.
  24. ^ Torres Quevedo, L. (1914). "Ensayos sobre Automática – Su definicion. Extension teórica de sus aplicaciones". Revista de la Academia de Ciencias Exacta, 12, pp. 391–418.
  25. ^ Torres Quevedo, Leonardo. Automática: Complemento de la Teoría de las Máquinas, (pdf), pp. 575-583, Revista de Obras Públicas, 19 November 1914.
  26. ^ Ronald T. Kneusel. Numbers and Computers, Springer, pp. 84-85, 2017. ISBN 978-3319505084
  27. ^ Randell, Brian. Digital Computers, History of Origins, (pdf), p. 545, Digital Computers: Origins, Encyclopedia of Computer Science, January 2003.
  28. ^ Randell 1982, p. 6, 11–13.
  29. ^ "In this sense Aiken needed IBM, whose technology included the use of punched cards, the accumulation of numerical data, and the transfer of numerical data from one register to another", Bernard Cohen, p.44 (2000)
  30. ^ Brian Randell, p. 187, 1975
  31. ^ The Association for Computing Machinery (ACM) was founded in 1947.
  32. ^ "IBM Archives: 1945". Ibm.com. January 23, 2003. from the original on January 5, 2019. Retrieved March 19, 2019.
  33. ^ "IBM100 – The Origins of Computer Science". Ibm.com. September 15, 1995. from the original on January 5, 2019. Retrieved March 19, 2019.
  34. ^ "Some EDSAC statistics". University of Cambridge. from the original on September 3, 2007. Retrieved November 19, 2011.
  35. ^ "Computer science pioneer Samuel D. Conte dies at 85". Purdue Computer Science. July 1, 2002. from the original on October 6, 2014. Retrieved December 12, 2014.
  36. ^ a b Tedre, Matti (2014). The Science of Computing: Shaping a Discipline. Taylor and Francis / CRC Press.
  37. ^ a b Louis Fine (1960). "The Role of the University in Computers, Data Processing, and Related Fields". Communications of the ACM. 2 (9): 7–14. doi:10.1145/368424.368427. S2CID 6740821.
  38. ^ "Stanford University Oral History". Stanford University. from the original on April 4, 2017. Retrieved May 30, 2013.
  39. ^ Donald Knuth (1972). "George Forsythe and the Development of Computer Science". Comms. ACM. October 20, 2013, at the Wayback Machine
  40. ^ Matti Tedre (2006). "The Development of Computer Science: A Sociocultural Perspective" (PDF). p. 260. Archived (PDF) from the original on October 9, 2022. Retrieved December 12, 2014.
  41. ^ Peter Naur (1966). "The science of datalogy". Communications of the ACM. 9 (7): 485. doi:10.1145/365719.366510. S2CID 47558402.
  42. ^ Weiss, E.A.; Corley, Henry P.T. "Letters to the editor". Communications of the ACM. 1 (4): 6. doi:10.1145/368796.368802. S2CID 5379449.
  43. ^ Communications of the ACM 2(1):p.4
  44. ^ IEEE Computer 28(12): p.136
  45. ^ P. Mounier-Kuhn, L'Informatique en France, de la seconde guerre mondiale au Plan Calcul. L'émergence d'une science, Paris, PUPS, 2010, ch. 3 & 4.
  46. ^ Groth, Dennis P. (February 2010). "Why an Informatics Degree?". Communications of the ACM. Cacm.acm.org. from the original on January 11, 2023. Retrieved June 14, 2016.
  47. ^ Tedre, M. (2011). "Computing as a Science: A Survey of Competing Viewpoints". Minds and Machines. 21 (3): 361–387. doi:10.1007/s11023-011-9240-4. S2CID 14263916.
  48. ^ Parnas, D.L. (1998). "Software engineering programmes are not computer science programmes". Annals of Software Engineering. 6: 19–37. doi:10.1023/A:1018949113292. S2CID 35786237., p. 19: "Rather than treat software engineering as a subfield of computer science, I treat it as an element of the set, Civil Engineering, Mechanical Engineering, Chemical Engineering, Electrical Engineering, [...]"
  49. ^ Luk, R.W.P. (2020). "Insight in how computer science can be a science". Science & Philosophy. 8 (2): 17–47. doi:10.23756/sp.v8i2.531.
  50. ^ Knuth, D.E. (1974). "Computer science and its relation to mathematics". The American Mathematical Monthly. 81 (4): 323–343. doi:10.2307/2318994. JSTOR 2318994.
  51. ^ a b c d e f g "The Philosophy of Computer Science". The Philosophy of Computer Science (Stanford Encyclopedia of Philosophy). Metaphysics Research Lab, Stanford University. 2021. from the original on September 16, 2021. Retrieved September 16, 2021.
  52. ^ Wegner, P. (October 13–15, 1976). Research paradigms in computer science—Proceedings of the 2nd international Conference on Software Engineering. San Francisco, California, United States: IEEE Computer Society Press, Los Alamitos, CA.
  53. ^ Denning, Peter J. (2007). "Computing is a natural science". Communications of the ACM. 50 (7): 13–18. doi:10.1145/1272516.1272529. S2CID 20045303.
  54. ^ Eden, A.H. (2007). (PDF). Minds and Machines. 17 (2): 135–167. CiteSeerX 10.1.1.304.7763. doi:10.1007/s11023-007-9060-8. S2CID 3023076. Archived from the original (PDF) on February 15, 2016.
  55. ^ Turner, Raymond; Angius, Nicola (2019). "The Philosophy of Computer Science". In Zalta, Edward N. (ed.). The Stanford Encyclopedia of Philosophy. from the original on October 14, 2019. Retrieved October 14, 2019.
  56. ^ a b . Computing Sciences Accreditation Board. May 28, 1997. Archived from the original on June 17, 2008. Retrieved May 23, 2010.
  57. ^ Committee on the Fundamentals of Computer Science: Challenges and Opportunities, National Research Council (2004). Computer Science: Reflections on the Field, Reflections from the Field. National Academies Press. ISBN 978-0-309-09301-9. from the original on February 18, 2011. Retrieved August 31, 2008.
  58. ^ "CSAB Leading Computer Education". CSAB. August 3, 2011. from the original on January 20, 2019. Retrieved November 19, 2011.
  59. ^ Clay Mathematics Institute P = NP October 14, 2013, at the Wayback Machine
  60. ^ P. Collins, Graham (October 14, 2002). "Claude E. Shannon: Founder of Information Theory". Scientific American. from the original on January 16, 2014. Retrieved December 12, 2014.
  61. ^ Van-Nam Huynh; Vladik Kreinovich; Songsak Sriboonchitta; 2012. Uncertainty Analysis in Econometrics with Applications. Springer Science & Business Media. p. 63. ISBN 978-3-642-35443-4.
  62. ^ Phillip A. Laplante, (2010). Encyclopedia of Software Engineering Three-Volume Set (Print). CRC Press. p. 309. ISBN 978-1-351-24926-3.
  63. ^ Muhammad H. Rashid, (2016). SPICE for Power Electronics and Electric Power. CRC Press. p. 6. ISBN 978-1-4398-6047-2.
  64. ^ "What is an integrated circuit (IC)? A vital component of modern electronics". WhatIs.com. from the original on November 15, 2021. Retrieved November 15, 2021.
  65. ^ A. Thisted, Ronald (April 7, 1997). "Computer Architecture" (PDF). The University of Chicago. Archived (PDF) from the original on October 9, 2022.
  66. ^ Jiacun Wang, (2017). Real-Time Embedded Systems. Wiley. p. 12. ISBN 978-1-119-42070-5.
  67. ^ Gordana Dodig-Crnkovic; Raffaela Giovagnoli, (2013). Computing Nature: Turing Centenary Perspective. Springer Science & Business Media. p. 247. ISBN 978-3-642-37225-4.
  68. ^ Simon Elias Bibri (2018). Smart Sustainable Cities of the Future: The Untapped Potential of Big Data Analytics and Context-Aware Computing for Advancing Sustainability. Springer. p. 74. ISBN 978-3-319-73981-6.
  69. ^ Katz, Jonathan (2008). Introduction to modern cryptography. Yehuda Lindell. Boca Raton: Chapman & Hall/CRC. ISBN 978-1-58488-551-1. OCLC 137325053. from the original on May 6, 2022. Retrieved November 17, 2021.
  70. ^ Rapaport, William J. (September 20, 2013). "What Is Computation?". State University of New York at Buffalo. from the original on February 14, 2001. Retrieved August 31, 2013.
  71. ^ B. Jack Copeland, (2012). Alan Turing's Electronic Brain: The Struggle to Build the ACE, the World's Fastest Computer. OUP Oxford. p. 107. ISBN 978-0-19-960915-4.
  72. ^ Charles W. Herbert, (2010). An Introduction to Programming Using Alice 2.2. Cengage Learning. p. 122. ISBN 0-538-47866-7.
  73. ^ Md. Rezaul Karim; Sridhar Alla, (2017). Scala and Spark for Big Data Analytics: Explore the concepts of functional programming, data streaming, and machine learning. Packt Publishing Ltd. p. 87. ISBN 978-1-78355-050-0.
  74. ^ Lex Sheehan, (2017). Learning Functional Programming in Go: Change the way you approach your applications using functional programming in Go. Packt Publishing Ltd. p. 16. ISBN 978-1-78728-604-7.
  75. ^ Evelio Padilla, (2015). Substation Automation Systems: Design and Implementation. Wiley. p. 245. ISBN 978-1-118-98730-8.
  76. ^ . MDN Web Docs. Mozilla Foundation. Archived from the original on August 21, 2013.
  77. ^ Meyer, Bertrand (April 2009). "Viewpoint: Research evaluation for computer science". Communications of the ACM. 25 (4): 31–34. doi:10.1145/1498765.1498780. S2CID 8625066.
  78. ^ Patterson, David (August 1999). "Evaluating Computer Scientists and Engineers For Promotion and Tenure". Computing Research Association. from the original on July 22, 2015. Retrieved July 19, 2015.
  79. ^ Fortnow, Lance (August 2009). "Viewpoint: Time for Computer Science to Grow Up". Communications of the ACM. 52 (8): 33–35. doi:10.1145/1536616.1536631.
  80. ^ Burns, Judith (April 3, 2016). "Computer science A-level 1970s style". from the original on February 9, 2019. Retrieved February 9, 2019.
  81. ^ Jones, Michael (October 1915). (PDF). Winston Churchill Memorial Trust. Archived from the original (PDF) on October 22, 2016. Retrieved February 9, 2019.
  82. ^ "Computer Science: Not Just an Elective Anymore". Education Week. February 25, 2014. from the original on December 1, 2016. Retrieved July 20, 2015.
  83. ^ Wilson, Cameron; Sudol, Leigh Ann; Stephenson, Chris; Stehlik, Mark (2010). "Running on Empty: The Failure to Teach K–12 Computer Science in the Digital Age" (PDF). ACM. (PDF) from the original on June 12, 2013. Retrieved July 20, 2015.
  84. ^ "2021 State of computer science education: Accelerating action through advocacy" (PDF). Code.org, CSTA, & ECEP Alliance. 2021. Archived (PDF) from the original on October 9, 2022.
  85. ^ "A is for algorithm". The Economist. April 26, 2014. from the original on October 18, 2017. Retrieved August 26, 2017.
  86. ^ (PDF). Archived from the original (PDF) on May 8, 2013. Retrieved July 20, 2015.
  87. ^ "Adding Coding to the Curriculum". The New York Times. March 23, 2014. Archived from the original on January 1, 2022.

Further reading

  • Tucker, Allen B. (2004). Computer Science Handbook (2nd ed.). Chapman and Hall/CRC. ISBN 978-1-58488-360-9.
  • Ralston, Anthony; Reilly, Edwin D.; Hemmendinger, David (2000). Encyclopedia of Computer Science (4th ed.). Grove's Dictionaries. ISBN 978-1-56159-248-7. from the original on June 8, 2020. Retrieved February 6, 2011.
  • Edwin D. Reilly (2003). Milestones in Computer Science and Information Technology. Greenwood Publishing Group. ISBN 978-1-57356-521-9.
  • Knuth, Donald E. (1996). Selected Papers on Computer Science. CSLI Publications, Cambridge University Press.
  • Collier, Bruce (1990). The little engine that could've: The calculating machines of Charles Babbage. Garland Publishing Inc. ISBN 978-0-8240-0043-1. from the original on January 20, 2007. Retrieved May 4, 2013.
  • Cohen, Bernard (2000). Howard Aiken, Portrait of a computer pioneer. The MIT press. ISBN 978-0-262-53179-5.
  • Tedre, Matti (2014). The Science of Computing: Shaping a Discipline. CRC Press, Taylor & Francis.
  • Randell, Brian (1973). The origins of Digital computers, Selected Papers. Springer-Verlag. ISBN 978-3-540-06169-4.
  • Randell, Brian (October–December 1982). (PDF). IEEE Annals of the History of Computing. 4 (4): 327–341. doi:10.1109/mahc.1982.10042. S2CID 1737953. Archived from the original (PDF) on September 21, 2013.
  • Peter J. Denning. Is computer science science?, Communications of the ACM, April 2005.
  • Peter J. Denning, Great principles in computing curricula, Technical Symposium on Computer Science Education, 2004.

External links

  • DBLP Computer Science Bibliography
  • Association for Computing Machinery
  • Institute of Electrical and Electronics Engineers

computer, science, other, uses, disambiguation, study, computation, information, automation, spans, theoretical, disciplines, such, algorithms, theory, computation, information, theory, applied, disciplines, including, design, implementation, hardware, softwar. For other uses see Computer science disambiguation Computer science is the study of computation information and automation 1 2 3 Computer science spans theoretical disciplines such as algorithms theory of computation and information theory to applied disciplines including the design and implementation of hardware and software 4 5 6 Though more often considered an academic discipline computer science is closely related to computer programming 7 Fundamental areas of computer scienceProgramming language theoryComputational complexity theoryArtificial intelligenceComputer architecture Algorithms and data structures are central to computer science 8 The theory of computation concerns abstract models of computation and general classes of problems that can be solved using them The fields of cryptography and computer security involve studying the means for secure communication and for preventing security vulnerabilities Computer graphics and computational geometry address the generation of images Programming language theory considers different ways to describe computational processes and database theory concerns the management of repositories of data Human computer interaction investigates the interfaces through which humans and computers interact and software engineering focuses on the design and principles behind developing software Areas such as operating systems networks and embedded systems investigate the principles and design behind complex systems Computer architecture describes the construction of computer components and computer operated equipment Artificial intelligence and machine learning aim to synthesize goal orientated processes such as problem solving decision making environmental adaptation planning and learning found in humans and animals Within artificial intelligence computer vision aims to understand and process image and video data while natural language processing aims to understand and process textual and linguistic data The fundamental concern of computer science is determining what can and cannot be automated 2 9 3 10 11 The Turing Award is generally recognized as the highest distinction in computer science 12 13 Contents 1 History 2 Etymology and scope 3 Philosophy 3 1 Epistemology of computer science 3 2 Paradigms of computer science 4 Fields 4 1 Theoretical computer science 4 1 1 Theory of computation 4 1 2 Information and coding theory 4 1 3 Data structures and algorithms 4 1 4 Programming language theory and formal methods 4 2 Applied computer science 4 2 1 Computer graphics and visualization 4 2 2 Image and sound processing 4 2 3 Computational science finance and engineering 4 2 4 Social computing and human computer interaction 4 2 5 Software engineering 4 2 6 Artificial intelligence 4 3 Computer systems 4 3 1 Computer architecture and organization 4 3 2 Concurrent parallel and distributed computing 4 3 3 Computer networks 4 3 4 Computer security and cryptography 4 3 5 Databases and data mining 5 Discoveries 6 Programming paradigms 7 Research 8 Education 9 See also 10 Notes 11 References 12 Further reading 13 External linksHistoryMain article History of computer science nbsp Gottfried Wilhelm Leibniz 1646 1716 developed logic in a binary number system and has been called the founder of computer science 14 nbsp Charles Babbage is sometimes referred to as the father of computing 15 nbsp Ada Lovelace published the first algorithm intended for processing on a computer 16 The earliest foundations of what would become computer science predate the invention of the modern digital computer Machines for calculating fixed numerical tasks such as the abacus have existed since antiquity aiding in computations such as multiplication and division Algorithms for performing computations have existed since antiquity even before the development of sophisticated computing equipment 17 Wilhelm Schickard designed and constructed the first working mechanical calculator in 1623 18 In 1673 Gottfried Leibniz demonstrated a digital mechanical calculator called the Stepped Reckoner 19 Leibniz may be considered the first computer scientist and information theorist because of various reasons including the fact that he documented the binary number system In 1820 Thomas de Colmar launched the mechanical calculator industry note 1 when he invented his simplified arithmometer the first calculating machine strong enough and reliable enough to be used daily in an office environment Charles Babbage started the design of the first automatic mechanical calculator his Difference Engine in 1822 which eventually gave him the idea of the first programmable mechanical calculator his Analytical Engine 20 He started developing this machine in 1834 and in less than two years he had sketched out many of the salient features of the modern computer 21 A crucial step was the adoption of a punched card system derived from the Jacquard loom 21 making it infinitely programmable note 2 In 1843 during the translation of a French article on the Analytical Engine Ada Lovelace wrote in one of the many notes she included an algorithm to compute the Bernoulli numbers which is considered to be the first published algorithm ever specifically tailored for implementation on a computer 22 Around 1885 Herman Hollerith invented the tabulator which used punched cards to process statistical information eventually his company became part of IBM Following Babbage although unaware of his earlier work Percy Ludgate in 1909 published 23 the 2nd of the only two designs for mechanical analytical engines in history In 1914 the Spanish engineer Leonardo Torres Quevedo published his Essays on Automatics 24 and designed inspired by Babbage a theoretical electromechanical calculating machine which was to be controlled by a read only program The paper also introduced the idea of floating point arithmetic 25 26 In 1920 to celebrate the 100th anniversary of the invention of the arithmometer Torres presented in Paris the Electromechanical Arithmometer a prototype that demonstrated the feasibility of an electromechanical analytical engine 27 on which commands could be typed and the results printed automatically 28 In 1937 one hundred years after Babbage s impossible dream Howard Aiken convinced IBM which was making all kinds of punched card equipment and was also in the calculator business 29 to develop his giant programmable calculator the ASCC Harvard Mark I based on Babbage s Analytical Engine which itself used cards and a central computing unit When the machine was finished some hailed it as Babbage s dream come true 30 During the 1940s with the development of new and more powerful computing machines such as the Atanasoff Berry computer and ENIAC the term computer came to refer to the machines rather than their human predecessors 31 As it became clear that computers could be used for more than just mathematical calculations the field of computer science broadened to study computation in general In 1945 IBM founded the Watson Scientific Computing Laboratory at Columbia University in New York City The renovated fraternity house on Manhattan s West Side was IBM s first laboratory devoted to pure science The lab is the forerunner of IBM s Research Division which today operates research facilities around the world 32 Ultimately the close relationship between IBM and Columbia University was instrumental in the emergence of a new scientific discipline with Columbia offering one of the first academic credit courses in computer science in 1946 33 Computer science began to be established as a distinct academic discipline in the 1950s and early 1960s 7 34 The world s first computer science degree program the Cambridge Diploma in Computer Science began at the University of Cambridge Computer Laboratory in 1953 The first computer science department in the United States was formed at Purdue University in 1962 35 Since practical computers became available many applications of computing have become distinct areas of study in their own rights See also History of computing and History of informaticsEtymology and scopeSee also Informatics Etymology Although first proposed in 1956 36 the term computer science appears in a 1959 article in Communications of the ACM 37 in which Louis Fein argues for the creation of a Graduate School in Computer Sciences analogous to the creation of Harvard Business School in 1921 38 Louis justifies the name by arguing that like management science the subject is applied and interdisciplinary in nature while having the characteristics typical of an academic discipline 37 His efforts and those of others such as numerical analyst George Forsythe were rewarded universities went on to create such departments starting with Purdue in 1962 39 Despite its name a significant amount of computer science does not involve the study of computers themselves Because of this several alternative names have been proposed 40 Certain departments of major universities prefer the term computing science to emphasize precisely that difference Danish scientist Peter Naur suggested the term datalogy 41 to reflect the fact that the scientific discipline revolves around data and data treatment while not necessarily involving computers The first scientific institution to use the term was the Department of Datalogy at the University of Copenhagen founded in 1969 with Peter Naur being the first professor in datalogy The term is used mainly in the Scandinavian countries An alternative term also proposed by Naur is data science this is now used for a multi disciplinary field of data analysis including statistics and databases In the early days of computing a number of terms for the practitioners of the field of computing were suggested in the Communications of the ACM turingineer turologist flow charts man applied meta mathematician and applied epistemologist 42 Three months later in the same journal comptologist was suggested followed next year by hypologist 43 The term computics has also been suggested 44 In Europe terms derived from contracted translations of the expression automatic information e g informazione automatica in Italian or information and mathematics are often used e g informatique French Informatik German informatica Italian Dutch informatica Spanish Portuguese informatika Slavic languages and Hungarian or pliroforiki plhroforikh which means informatics in Greek Similar words have also been adopted in the UK as in the School of Informatics University of Edinburgh 45 In the U S however informatics is linked with applied computing or computing in the context of another domain 46 A folkloric quotation often attributed to but almost certainly not first formulated by Edsger Dijkstra states that computer science is no more about computers than astronomy is about telescopes note 3 The design and deployment of computers and computer systems is generally considered the province of disciplines other than computer science For example the study of computer hardware is usually considered part of computer engineering while the study of commercial computer systems and their deployment is often called information technology or information systems However there has been exchange of ideas between the various computer related disciplines Computer science research also often intersects other disciplines such as cognitive science linguistics mathematics physics biology Earth science statistics philosophy and logic Computer science is considered by some to have a much closer relationship with mathematics than many scientific disciplines with some observers saying that computing is a mathematical science 7 Early computer science was strongly influenced by the work of mathematicians such as Kurt Godel Alan Turing John von Neumann Rozsa Peter and Alonzo Church and there continues to be a useful interchange of ideas between the two fields in areas such as mathematical logic category theory domain theory and algebra 36 The relationship between computer science and software engineering is a contentious issue which is further muddied by disputes over what the term software engineering means and how computer science is defined 47 David Parnas taking a cue from the relationship between other engineering and science disciplines has claimed that the principal focus of computer science is studying the properties of computation in general while the principal focus of software engineering is the design of specific computations to achieve practical goals making the two separate but complementary disciplines 48 The academic political and funding aspects of computer science tend to depend on whether a department is formed with a mathematical emphasis or with an engineering emphasis Computer science departments with a mathematics emphasis and with a numerical orientation consider alignment with computational science Both types of departments tend to make efforts to bridge the field educationally if not across all research PhilosophyMain article Philosophy of computer science Epistemology of computer scienceDespite the word science in its name there is debate over whether or not computer science is a discipline of science 49 mathematics 50 or engineering 51 Allen Newell and Herbert A Simon argued in 1975 Computer science is an empirical discipline We would have called it an experimental science but like astronomy economics and geology some of its unique forms of observation and experience do not fit a narrow stereotype of the experimental method Nonetheless they are experiments Each new machine that is built is an experiment Actually constructing the machine poses a question to nature and we listen for the answer by observing the machine in operation and analyzing it by all analytical and measurement means available 51 It has since been argued that computer science can be classified as an empirical science since it makes use of empirical testing to evaluate the correctness of programs but a problem remains in defining the laws and theorems of computer science if any exist and defining the nature of experiments in computer science 51 Proponents of classifying computer science as an engineering discipline argue that the reliability of computational systems is investigated in the same way as bridges in civil engineering and airplanes in aerospace engineering 51 They also argue that while empirical sciences observe what presently exists computer science observes what is possible to exist and while scientists discover laws from observation no proper laws have been found in computer science and it is instead concerned with creating phenomena 51 Proponents of classifying computer science as a mathematical discipline argue that computer programs are physical realizations of mathematical entities and programs can be deductively reasoned through mathematical formal methods 51 Computer scientists Edsger W Dijkstra and Tony Hoare regard instructions for computer programs as mathematical sentences and interpret formal semantics for programming languages as mathematical axiomatic systems 51 Paradigms of computer science A number of computer scientists have argued for the distinction of three separate paradigms in computer science Peter Wegner argued that those paradigms are science technology and mathematics 52 Peter Denning s working group argued that they are theory abstraction modeling and design 7 Amnon H Eden described them as the rationalist paradigm which treats computer science as a branch of mathematics which is prevalent in theoretical computer science and mainly employs deductive reasoning the technocratic paradigm which might be found in engineering approaches most prominently in software engineering and the scientific paradigm which approaches computer related artifacts from the empirical perspective of natural sciences 53 identifiable in some branches of artificial intelligence 54 Computer science focuses on methods involved in design specification programming verification implementation and testing of human made computing systems 55 FieldsThis is a dynamic list and may never be able to satisfy particular standards for completeness You can help by adding missing items with reliable sources Further information Outline of computer science As a discipline computer science spans a range of topics from theoretical studies of algorithms and the limits of computation to the practical issues of implementing computing systems in hardware and software 56 57 CSAB formerly called Computing Sciences Accreditation Board which is made up of representatives of the Association for Computing Machinery ACM and the IEEE Computer Society IEEE CS 58 identifies four areas that it considers crucial to the discipline of computer science theory of computation algorithms and data structures programming methodology and languages and computer elements and architecture In addition to these four areas CSAB also identifies fields such as software engineering artificial intelligence computer networking and communication database systems parallel computation distributed computation human computer interaction computer graphics operating systems and numerical and symbolic computation as being important areas of computer science 56 Theoretical computer science Main article Theoretical computer science Theoretical Computer Science is mathematical and abstract in spirit but it derives its motivation from the practical and everyday computation Its aim is to understand the nature of computation and as a consequence of this understanding provide more efficient methodologies Theory of computation Main article Theory of computation According to Peter Denning the fundamental question underlying computer science is What can be automated 3 Theory of computation is focused on answering fundamental questions about what can be computed and what amount of resources are required to perform those computations In an effort to answer the first question computability theory examines which computational problems are solvable on various theoretical models of computation The second question is addressed by computational complexity theory which studies the time and space costs associated with different approaches to solving a multitude of computational problems The famous P NP problem one of the Millennium Prize Problems 59 is an open problem in the theory of computation nbsp nbsp M X X X displaystyle M X X not in X nbsp nbsp Automata theory Formal languages Computability theory Computational complexity theory nbsp nbsp nbsp nbsp Models of computation Quantum computing theory Logic circuit theory Cellular automataInformation and coding theory Main articles Information theory and Coding theory Information theory closely related to probability and statistics is related to the quantification of information This was developed by Claude Shannon to find fundamental limits on signal processing operations such as compressing data and on reliably storing and communicating data 60 Coding theory is the study of the properties of codes systems for converting information from one form to another and their fitness for a specific application Codes are used for data compression cryptography error detection and correction and more recently also for network coding Codes are studied for the purpose of designing efficient and reliable data transmission methods 61 nbsp nbsp nbsp nbsp nbsp Coding theory Channel capacity Algorithmic information theory Signal detection theory Kolmogorov complexityData structures and algorithms Main articles Data structure and AlgorithmData structures and algorithms are the studies of commonly used computational methods and their computational efficiency O n2 nbsp nbsp nbsp nbsp nbsp Analysis of algorithms Algorithm design Data structures Combinatorial optimization Computational geometry Randomized algorithmsProgramming language theory and formal methods Main articles Programming language theory and Formal methods Programming language theory is a branch of computer science that deals with the design implementation analysis characterization and classification of programming languages and their individual features It falls within the discipline of computer science both depending on and affecting mathematics software engineering and linguistics It is an active research area with numerous dedicated academic journals Formal methods are a particular kind of mathematically based technique for the specification development and verification of software and hardware systems 62 The use of formal methods for software and hardware design is motivated by the expectation that as in other engineering disciplines performing appropriate mathematical analysis can contribute to the reliability and robustness of a design They form an important theoretical underpinning for software engineering especially where safety or security is involved Formal methods are a useful adjunct to software testing since they help avoid errors and can also give a framework for testing For industrial use tool support is required However the high cost of using formal methods means that they are usually only used in the development of high integrity and life critical systems where safety or security is of utmost importance Formal methods are best described as the application of a fairly broad variety of theoretical computer science fundamentals in particular logic calculi formal languages automata theory and program semantics but also type systems and algebraic data types to problems in software and hardware specification and verification nbsp G x Int displaystyle Gamma vdash x text Int nbsp nbsp nbsp nbsp nbsp Formal semantics Type theory Compiler design Programming languages Formal verification Automated theorem provingApplied computer science Computer graphics and visualization Main article Computer graphics computer science Computer graphics is the study of digital visual contents and involves the synthesis and manipulation of image data The study is connected to many other fields in computer science including computer vision image processing and computational geometry and is heavily applied in the fields of special effects and video games nbsp nbsp nbsp nbsp nbsp nbsp 2D computer graphics Computer animation Rendering Mixed reality Virtual reality Solid modelingImage and sound processing Main article Data processing Information can take the form of images sound video or other multimedia Bits of information can be streamed via signals Its processing is the central notion of informatics the European view on computing which studies information processing algorithms independently of the type of information carrier whether it is electrical mechanical or biological This field plays important role in information theory telecommunications information engineering and has applications in medical image computing and speech synthesis among others What is the lower bound on the complexity of fast Fourier transform algorithms is one of unsolved problems in theoretical computer science nbsp nbsp nbsp nbsp nbsp nbsp FFT algorithms Image processing Speech recognition Data compression Medical image computing Speech synthesisComputational science finance and engineering Main articles Computational science Computational finance and Computational engineering Scientific computing or computational science is the field of study concerned with constructing mathematical models and quantitative analysis techniques and using computers to analyze and solve scientific problems A major usage of scientific computing is simulation of various processes including computational fluid dynamics physical electrical and electronic systems and circuits as well as societies and social situations notably war games along with their habitats among many others Modern computers enable optimization of such designs as complete aircraft Notable in electrical and electronic circuit design are SPICE 63 as well as software for physical realization of new or modified designs The latter includes essential design software for integrated circuits 64 nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp Numerical analysis Computational physics Computational chemistry Bioinformatics Neuroinformatics Psychoinformatics Medical informatics Computational engineering Computational musicologySocial computing and human computer interaction Main articles Social computing and Human computer interaction Social computing is an area that is concerned with the intersection of social behavior and computational systems Human computer interaction research develops theories principles and guidelines for user interface designers Software engineering Main article Software engineering See also Computer programming Software engineering is the study of designing implementing and modifying the software in order to ensure it is of high quality affordable maintainable and fast to build It is a systematic approach to software design involving the application of engineering practices to software Software engineering deals with the organizing and analyzing of software it does not just deal with the creation or manufacture of new software but its internal arrangement and maintenance For example software testing systems engineering technical debt and software development processes Artificial intelligence Main articles Artificial intelligence and Bio inspired computing Artificial intelligence AI aims to or is required to synthesize goal orientated processes such as problem solving decision making environmental adaptation learning and communication found in humans and animals From its origins in cybernetics and in the Dartmouth Conference 1956 artificial intelligence research has been necessarily cross disciplinary drawing on areas of expertise such as applied mathematics symbolic logic semiotics electrical engineering philosophy of mind neurophysiology and social intelligence AI is associated in the popular mind with robotic development but the main field of practical application has been as an embedded component in areas of software development which require computational understanding The starting point in the late 1940s was Alan Turing s question Can computers think and the question remains effectively unanswered although the Turing test is still used to assess computer output on the scale of human intelligence But the automation of evaluative and predictive tasks has been increasingly successful as a substitute for human monitoring and intervention in domains of computer application involving complex real world data nbsp nbsp nbsp nbsp Computational learning theory Computer vision Neural networks Planning and scheduling nbsp nbsp nbsp nbsp Natural language processing Computational game theory Evolutionary computation Autonomic computing nbsp nbsp nbsp nbsp Representation and reasoning Pattern recognition Robotics Swarm intelligenceComputer systems Computer architecture and organization Main articles Computer architecture Computer organisation and Computer engineering Computer architecture or digital computer organization is the conceptual design and fundamental operational structure of a computer system It focuses largely on the way by which the central processing unit performs internally and accesses addresses in memory 65 Computer engineers study computational logic and design of computer hardware from individual processor components microcontrollers personal computers to supercomputers and embedded systems The term architecture in computer literature can be traced to the work of Lyle R Johnson and Frederick P Brooks Jr members of the Machine Organization department in IBM s main research center in 1959 nbsp nbsp nbsp nbsp Processing unit Microarchitecture Multiprocessing Processor design nbsp nbsp nbsp nbsp Ubiquitous computing Systems architecture Operating systems Input output nbsp nbsp nbsp nbsp Embedded system Real time computing Dependability InterpreterConcurrent parallel and distributed computing Main articles Concurrency computer science and Distributed computing Concurrency is a property of systems in which several computations are executing simultaneously and potentially interacting with each other 66 A number of mathematical models have been developed for general concurrent computation including Petri nets process calculi and the Parallel Random Access Machine model 67 When multiple computers are connected in a network while using concurrency this is known as a distributed system Computers within that distributed system have their own private memory and information can be exchanged to achieve common goals 68 Computer networks Main article Computer network This branch of computer science aims to manage networks between computers worldwide Computer security and cryptography Main articles Computer security and Cryptography Computer security is a branch of computer technology with the objective of protecting information from unauthorized access disruption or modification while maintaining the accessibility and usability of the system for its intended users Historical cryptography is the art of writing and deciphering secret messages Modern cryptography is the scientific study of problems relating to distributed computations that can be attacked 69 Technologies studied in modern cryptography include symmetric and asymmetric encryption digital signatures cryptographic hash functions key agreement protocols blockchain zero knowledge proofs and garbled circuits Databases and data mining Main articles Database and Data mining A database is intended to organize store and retrieve large amounts of data easily Digital databases are managed using database management systems to store create maintain and search data through database models and query languages Data mining is a process of discovering patterns in large data sets DiscoveriesThe philosopher of computing Bill Rapaport noted three Great Insights of Computer Science 70 Gottfried Wilhelm Leibniz s George Boole s Alan Turing s Claude Shannon s and Samuel Morse s insight there are only two objects that a computer has to deal with in order to represent anything note 4 All the information about any computable problem can be represented using only 0 and 1 or any other bistable pair that can flip flop between two easily distinguishable states such as on off magnetized de magnetized high voltage low voltage etc dd See also Digital physics Alan Turing s insight there are only five actions that a computer has to perform in order to do anything Every algorithm can be expressed in a language for a computer consisting of only five basic instructions 71 move left one location move right one location read symbol at current location print 0 at current location print 1 at current location dd See also Turing machine Corrado Bohm and Giuseppe Jacopini s insight there are only three ways of combining these actions into more complex ones that are needed in order for a computer to do anything 72 Only three rules are needed to combine any set of basic instructions into more complex ones sequence first do this then do that selection IF such and such is the case THEN do this ELSE do that repetition WHILE such and such is the case DO this The three rules of Boehm s and Jacopini s insight can be further simplified with the use of goto which means it is more elementary than structured programming dd See also Structured program theoremProgramming paradigmsMain article Programming paradigm Programming languages can be used to accomplish different tasks in different ways Common programming paradigms include Functional programming a style of building the structure and elements of computer programs that treats computation as the evaluation of mathematical functions and avoids state and mutable data It is a declarative programming paradigm which means programming is done with expressions or declarations instead of statements 73 Imperative programming a programming paradigm that uses statements that change a program s state 74 In much the same way that the imperative mood in natural languages expresses commands an imperative program consists of commands for the computer to perform Imperative programming focuses on describing how a program operates Object oriented programming a programming paradigm based on the concept of objects which may contain data in the form of fields often known as attributes and code in the form of procedures often known as methods A feature of objects is that an object s procedures can access and often modify the data fields of the object with which they are associated Thus object oriented computer programs are made out of objects that interact with one another 75 Service oriented programming a programming paradigm that uses services as the unit of computer work to design and implement integrated business applications and mission critical software programsMany languages offer support for multiple paradigms making the distinction more a matter of style than of technical capabilities 76 ResearchFurther information List of computer science conferences and Category Computer science journals Conferences are important events for computer science research During these conferences researchers from the public and private sectors present their recent work and meet Unlike in most other academic fields in computer science the prestige of conference papers is greater than that of journal publications 77 78 One proposed explanation for this is the quick development of this relatively new field requires rapid review and distribution of results a task better handled by conferences than by journals 79 EducationMain article Computer science education Computer Science known by its near synonyms Computing Computer Studies has been taught in UK schools since the days of batch processing mark sensitive cards and paper tape but usually to a select few students 80 In 1981 the BBC produced a micro computer and classroom network and Computer Studies became common for GCE O level students 11 16 year old and Computer Science to A level students Its importance was recognised and it became a compulsory part of the National Curriculum for Key Stage 3 amp 4 In September 2014 it became an entitlement for all pupils over the age of 4 81 In the US with 14 000 school districts deciding the curriculum provision was fractured 82 According to a 2010 report by the Association for Computing Machinery ACM and Computer Science Teachers Association CSTA only 14 out of 50 states have adopted significant education standards for high school computer science 83 According to a 2021 report only 51 of high schools in the US offer computer science 84 Israel New Zealand and South Korea have included computer science in their national secondary education curricula 85 86 and several others are following 87 See alsoGlossary of computer science List of computer scientists List of computer science awards List of pioneers in computer science Outline of computer scienceNotes In 1851 The introduction of punched cards into the new engine was important not only as a more convenient form of control than the drums or because programs could now be of unlimited extent and could be stored and repeated without the danger of introducing errors in setting the machine by hand it was important also because it served to crystallize Babbage s feeling that he had invented something really new something much more than a sophisticated calculating machine Bruce Collier 1970 See the entry Computer science on Wikiquote for the history of this quotation The word anything is written in quotation marks because there are things that computers cannot do One example is to answer the question if an arbitrary given computer program will eventually finish or run forever the Halting problem References What is Computer Science Department of Computer Science University of York Archived from the original on June 11 2020 Retrieved June 11 2020 a b What Can Be Automated Computer Science and Engineering Research Study Computer Science Series MIT Press 1980 ISBN 978 0262010603 Archived from the original on January 9 2021 a b c Denning P J Comer D E Gries D Mulder M C Tucker A Turner A J Young P R February 1989 Computing as a discipline Computer 22 2 63 70 doi 10 1109 2 19833 ISSN 1558 0814 Archived from the original on March 3 2022 Retrieved March 3 2022 The discipline of computing is the systematic study of algorithmic processes that describe and transform information their theory analysis design efficiency implementation and application The fundamental question underlying all of computing is What can be efficiently automated WordNet Search 3 1 WordNet Search Wordnetweb princeton edu Archived from the original on October 18 2017 Retrieved May 14 2012 Definition of computer science Dictionary com www dictionary com Archived from the original on June 11 2020 Retrieved June 11 2020 What is Computer Science Undergraduate Computer Science at UMD undergrad cs umd edu Archived from the original on November 27 2020 Retrieved July 15 2022 a b c d Denning P J Comer D E Gries D Mulder M C Tucker A Turner A J Young P R February 1989 Computing as a discipline Computer 22 2 63 70 doi 10 1109 2 19833 ISSN 1558 0814 Archived from the original on March 3 2022 Retrieved March 3 2022 Harel David 2014 Algorithmics The Spirit of Computing Springer Berlin ISBN 978 3 642 44135 6 OCLC 876384882 Archived from the original on June 17 2020 Retrieved June 17 2020 Patton Richard D Patton Peter C 2009 Nof Shimon Y ed What Can be Automated What Cannot be Automated Springer Handbook of Automation Springer Handbooks Berlin Heidelberg Springer pp 305 313 doi 10 1007 978 3 540 78831 7 18 ISBN 978 3 540 78831 7 archived from the original on January 11 2023 retrieved March 3 2022 Forsythe George August 5 10 1969 Computer Science and Education Proceedings of IFIP Congress 1968 The question What can be automated is one of the most inspiring philosophical and practical questions of contemporary civilization Knuth Donald E August 1 1972 George Forsythe and the development of computer science Communications of the ACM 15 8 721 726 doi 10 1145 361532 361538 ISSN 0001 0782 S2CID 12512057 Hanson Vicki L January 23 2017 Celebrating 50 years of the Turing award Communications of the ACM 60 2 5 doi 10 1145 3033604 ISSN 0001 0782 S2CID 29984960 Scott Eric Martins Marcella Scoczynski Ribeiro Yafrani Mohamed El Volz Vanessa Wilson Dennis G June 5 2018 ACM marks 50 years of the ACM A M turing award and computing s greatest achievements ACM SIGEVOlution 10 3 9 11 doi 10 1145 3231560 3231563 S2CID 47021559 2021 375th birthday of Leibniz father of computer science people idsia ch Archived from the original on September 21 2022 Retrieved February 4 2023 Charles Babbage Institute Who Was Charles Babbage cbi umn edu Archived from the original on January 9 2007 Retrieved December 28 2016 Ada Lovelace Babbage Engine Computer History Museum www computerhistory org Archived from the original on December 25 2018 Retrieved December 28 2016 History of Computer Science cs uwaterloo ca Archived from the original on July 29 2017 Retrieved July 15 2022 Wilhelm Schickard Ein Computerpionier PDF in German Archived from the original PDF on September 19 2020 Retrieved December 4 2016 Keates Fiona June 25 2012 A Brief History of Computing The Repository The Royal Society Archived from the original on June 29 2012 Retrieved January 19 2014 Science Museum Babbage s Analytical Engine 1834 1871 Trial model Archived from the original on August 30 2019 Retrieved May 11 2020 a b Hyman Anthony 1982 Charles Babbage Pioneer of the Computer Oxford University Press ISBN 978 0691083032 A Selection and Adaptation From Ada s Notes found in Ada The Enchantress of Numbers by Betty Alexandra Toole Ed D Strawberry Press Mill Valley CA Archived from the original on February 10 2006 Retrieved May 4 2006 The John Gabriel Byrne Computer Science Collection PDF Archived from the original on April 16 2019 Retrieved August 8 2019 Torres Quevedo L 1914 Ensayos sobre Automatica Su definicion Extension teorica de sus aplicaciones Revista de la Academia de Ciencias Exacta 12 pp 391 418 Torres Quevedo Leonardo Automatica Complemento de la Teoria de las Maquinas pdf pp 575 583 Revista de Obras Publicas 19 November 1914 Ronald T Kneusel Numbers and Computers Springer pp 84 85 2017 ISBN 978 3319505084 Randell Brian Digital Computers History of Origins pdf p 545 Digital Computers Origins Encyclopedia of Computer Science January 2003 Randell 1982 p 6 11 13 In this sense Aiken needed IBM whose technology included the use of punched cards the accumulation of numerical data and the transfer of numerical data from one register to another Bernard Cohen p 44 2000 Brian Randell p 187 1975 The Association for Computing Machinery ACM was founded in 1947 IBM Archives 1945 Ibm com January 23 2003 Archived from the original on January 5 2019 Retrieved March 19 2019 IBM100 The Origins of Computer Science Ibm com September 15 1995 Archived from the original on January 5 2019 Retrieved March 19 2019 Some EDSAC statistics University of Cambridge Archived from the original on September 3 2007 Retrieved November 19 2011 Computer science pioneer Samuel D Conte dies at 85 Purdue Computer Science July 1 2002 Archived from the original on October 6 2014 Retrieved December 12 2014 a b Tedre Matti 2014 The Science of Computing Shaping a Discipline Taylor and Francis CRC Press a b Louis Fine 1960 The Role of the University in Computers Data Processing and Related Fields Communications of the ACM 2 9 7 14 doi 10 1145 368424 368427 S2CID 6740821 Stanford University Oral History Stanford University Archived from the original on April 4 2017 Retrieved May 30 2013 Donald Knuth 1972 George Forsythe and the Development of Computer Science Comms ACM Archived October 20 2013 at the Wayback Machine Matti Tedre 2006 The Development of Computer Science A Sociocultural Perspective PDF p 260 Archived PDF from the original on October 9 2022 Retrieved December 12 2014 Peter Naur 1966 The science of datalogy Communications of the ACM 9 7 485 doi 10 1145 365719 366510 S2CID 47558402 Weiss E A Corley Henry P T Letters to the editor Communications of the ACM 1 4 6 doi 10 1145 368796 368802 S2CID 5379449 Communications of the ACM 2 1 p 4 IEEE Computer 28 12 p 136 P Mounier Kuhn L Informatique en France de la seconde guerre mondiale au Plan Calcul L emergence d une science Paris PUPS 2010 ch 3 amp 4 Groth Dennis P February 2010 Why an Informatics Degree Communications of the ACM Cacm acm org Archived from the original on January 11 2023 Retrieved June 14 2016 Tedre M 2011 Computing as a Science A Survey of Competing Viewpoints Minds and Machines 21 3 361 387 doi 10 1007 s11023 011 9240 4 S2CID 14263916 Parnas D L 1998 Software engineering programmes are not computer science programmes Annals of Software Engineering 6 19 37 doi 10 1023 A 1018949113292 S2CID 35786237 p 19 Rather than treat software engineering as a subfield of computer science I treat it as an element of the set Civil Engineering Mechanical Engineering Chemical Engineering Electrical Engineering Luk R W P 2020 Insight in how computer science can be a science Science amp Philosophy 8 2 17 47 doi 10 23756 sp v8i2 531 Knuth D E 1974 Computer science and its relation to mathematics The American Mathematical Monthly 81 4 323 343 doi 10 2307 2318994 JSTOR 2318994 a b c d e f g The Philosophy of Computer Science The Philosophy of Computer Science Stanford Encyclopedia of Philosophy Metaphysics Research Lab Stanford University 2021 Archived from the original on September 16 2021 Retrieved September 16 2021 Wegner P October 13 15 1976 Research paradigms in computer science Proceedings of the 2nd international Conference on Software Engineering San Francisco California United States IEEE Computer Society Press Los Alamitos CA Denning Peter J 2007 Computing is a natural science Communications of the ACM 50 7 13 18 doi 10 1145 1272516 1272529 S2CID 20045303 Eden A H 2007 Three Paradigms of Computer Science PDF Minds and Machines 17 2 135 167 CiteSeerX 10 1 1 304 7763 doi 10 1007 s11023 007 9060 8 S2CID 3023076 Archived from the original PDF on February 15 2016 Turner Raymond Angius Nicola 2019 The Philosophy of Computer Science In Zalta Edward N ed The Stanford Encyclopedia of Philosophy Archived from the original on October 14 2019 Retrieved October 14 2019 a b Computer Science as a Profession Computing Sciences Accreditation Board May 28 1997 Archived from the original on June 17 2008 Retrieved May 23 2010 Committee on the Fundamentals of Computer Science Challenges and Opportunities National Research Council 2004 Computer Science Reflections on the Field Reflections from the Field National Academies Press ISBN 978 0 309 09301 9 Archived from the original on February 18 2011 Retrieved August 31 2008 CSAB Leading Computer Education CSAB August 3 2011 Archived from the original on January 20 2019 Retrieved November 19 2011 Clay Mathematics Institute P NP Archived October 14 2013 at the Wayback Machine P Collins Graham October 14 2002 Claude E Shannon Founder of Information Theory Scientific American Archived from the original on January 16 2014 Retrieved December 12 2014 Van Nam Huynh Vladik Kreinovich Songsak Sriboonchitta 2012 Uncertainty Analysis in Econometrics with Applications Springer Science amp Business Media p 63 ISBN 978 3 642 35443 4 Phillip A Laplante 2010 Encyclopedia of Software Engineering Three Volume Set Print CRC Press p 309 ISBN 978 1 351 24926 3 Muhammad H Rashid 2016 SPICE for Power Electronics and Electric Power CRC Press p 6 ISBN 978 1 4398 6047 2 What is an integrated circuit IC A vital component of modern electronics WhatIs com Archived from the original on November 15 2021 Retrieved November 15 2021 A Thisted Ronald April 7 1997 Computer Architecture PDF The University of Chicago Archived PDF from the original on October 9 2022 Jiacun Wang 2017 Real Time Embedded Systems Wiley p 12 ISBN 978 1 119 42070 5 Gordana Dodig Crnkovic Raffaela Giovagnoli 2013 Computing Nature Turing Centenary Perspective Springer Science amp Business Media p 247 ISBN 978 3 642 37225 4 Simon Elias Bibri 2018 Smart Sustainable Cities of the Future The Untapped Potential of Big Data Analytics and Context Aware Computing for Advancing Sustainability Springer p 74 ISBN 978 3 319 73981 6 Katz Jonathan 2008 Introduction to modern cryptography Yehuda Lindell Boca Raton Chapman amp Hall CRC ISBN 978 1 58488 551 1 OCLC 137325053 Archived from the original on May 6 2022 Retrieved November 17 2021 Rapaport William J September 20 2013 What Is Computation State University of New York at Buffalo Archived from the original on February 14 2001 Retrieved August 31 2013 B Jack Copeland 2012 Alan Turing s Electronic Brain The Struggle to Build the ACE the World s Fastest Computer OUP Oxford p 107 ISBN 978 0 19 960915 4 Charles W Herbert 2010 An Introduction to Programming Using Alice 2 2 Cengage Learning p 122 ISBN 0 538 47866 7 Md Rezaul Karim Sridhar Alla 2017 Scala and Spark for Big Data Analytics Explore the concepts of functional programming data streaming and machine learning Packt Publishing Ltd p 87 ISBN 978 1 78355 050 0 Lex Sheehan 2017 Learning Functional Programming in Go Change the way you approach your applications using functional programming in Go Packt Publishing Ltd p 16 ISBN 978 1 78728 604 7 Evelio Padilla 2015 Substation Automation Systems Design and Implementation Wiley p 245 ISBN 978 1 118 98730 8 Multi Paradigm Programming Language MDN Web Docs Mozilla Foundation Archived from the original on August 21 2013 Meyer Bertrand April 2009 Viewpoint Research evaluation for computer science Communications of the ACM 25 4 31 34 doi 10 1145 1498765 1498780 S2CID 8625066 Patterson David August 1999 Evaluating Computer Scientists and Engineers For Promotion and Tenure Computing Research Association Archived from the original on July 22 2015 Retrieved July 19 2015 Fortnow Lance August 2009 Viewpoint Time for Computer Science to Grow Up Communications of the ACM 52 8 33 35 doi 10 1145 1536616 1536631 Burns Judith April 3 2016 Computer science A level 1970s style Archived from the original on February 9 2019 Retrieved February 9 2019 Jones Michael October 1915 Developing a Computer Science Curriculum in England Exploring Approaches in the USA PDF Winston Churchill Memorial Trust Archived from the original PDF on October 22 2016 Retrieved February 9 2019 Computer Science Not Just an Elective Anymore Education Week February 25 2014 Archived from the original on December 1 2016 Retrieved July 20 2015 Wilson Cameron Sudol Leigh Ann Stephenson Chris Stehlik Mark 2010 Running on Empty The Failure to Teach K 12 Computer Science in the Digital Age PDF ACM Archived PDF from the original on June 12 2013 Retrieved July 20 2015 2021 State of computer science education Accelerating action through advocacy PDF Code org CSTA amp ECEP Alliance 2021 Archived PDF from the original on October 9 2022 A is for algorithm The Economist April 26 2014 Archived from the original on October 18 2017 Retrieved August 26 2017 Computing at School International comparisons PDF Archived from the original PDF on May 8 2013 Retrieved July 20 2015 Adding Coding to the Curriculum The New York Times March 23 2014 Archived from the original on January 1 2022 Further readingTucker Allen B 2004 Computer Science Handbook 2nd ed Chapman and Hall CRC ISBN 978 1 58488 360 9 Ralston Anthony Reilly Edwin D Hemmendinger David 2000 Encyclopedia of Computer Science 4th ed Grove s Dictionaries ISBN 978 1 56159 248 7 Archived from the original on June 8 2020 Retrieved February 6 2011 Edwin D Reilly 2003 Milestones in Computer Science and Information Technology Greenwood Publishing Group ISBN 978 1 57356 521 9 Knuth Donald E 1996 Selected Papers on Computer Science CSLI Publications Cambridge University Press Collier Bruce 1990 The little engine that could ve The calculating machines of Charles Babbage Garland Publishing Inc ISBN 978 0 8240 0043 1 Archived from the original on January 20 2007 Retrieved May 4 2013 Cohen Bernard 2000 Howard Aiken Portrait of a computer pioneer The MIT press ISBN 978 0 262 53179 5 Tedre Matti 2014 The Science of Computing Shaping a Discipline CRC Press Taylor amp Francis Randell Brian 1973 The origins of Digital computers Selected Papers Springer Verlag ISBN 978 3 540 06169 4 Randell Brian October December 1982 From Analytical Engine to Electronic Digital Computer The Contributions of Ludgate Torres and Bush PDF IEEE Annals of the History of Computing 4 4 327 341 doi 10 1109 mahc 1982 10042 S2CID 1737953 Archived from the original PDF on September 21 2013 Peter J Denning Is computer science science Communications of the ACM April 2005 Peter J Denning Great principles in computing curricula Technical Symposium on Computer Science Education 2004 External links nbsp Wikibooks has a book on the topic of Informatics Practices for Class XI CBSE Computer science at Wikipedia s sister projects nbsp Definitions from Wiktionary nbsp Media from Commons nbsp Quotations from Wikiquote nbsp Textbooks from Wikibooks nbsp Resources from Wikiversity DBLP Computer Science Bibliography Association for Computing Machinery Institute of Electrical and Electronics Engineers Retrieved from https en wikipedia org w index php title Computer science amp oldid 1198156761, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.