fbpx
Wikipedia

Biodiversity

Biodiversity or biological diversity is the variety and variability of life on Earth. Biodiversity is a measure of variation at the genetic (genetic variability), species (species diversity), and ecosystem (ecosystem diversity) level.[1] Biodiversity is not distributed evenly on Earth; it is usually greater in the tropics as a result of the warm climate and high primary productivity in the region near the equator. Tropical forest ecosystems cover less than 10% of earth's surface and contain about 90% of the world's species. Marine biodiversity is usually higher along coasts in the Western Pacific, where sea surface temperature is highest, and in the mid-latitudinal band in all oceans. There are latitudinal gradients in species diversity. Biodiversity generally tends to cluster in hotspots, and has been increasing through time, but will be likely to slow in the future as a primary result of deforestation. It encompasses the evolutionary, ecological, and cultural processes that sustain life.[2]

An example of the biodiversity of fungi in a forest in Northern Saskatchewan (in this photo, there are also leaf lichens and mosses).

More than 99.9% of all species that ever lived on Earth, amounting to over five billion species, are estimated to be extinct. Estimates on the number of Earth's current species range from 10 million to 14 million, of which about 1.2 million have been documented and over 86% have not yet been described. The total amount of related DNA base pairs on Earth is estimated at 5.0 x 1037 and weighs 50 billion tonnes. In comparison, the total mass of the biosphere has been estimated to be as much as four trillion tons of carbon. In July 2016, scientists reported identifying a set of 355 genes from the last universal common ancestor (LUCA) of all organisms living on Earth.

The age of Earth is about 4.54 billion years. The earliest undisputed evidence of life dates at least from 3.7 billion years ago, during the Eoarchean era after a geological crust started to solidify following the earlier molten Hadean eon. There are microbial mat fossils found in 3.48 billion-year-old sandstone discovered in Western Australia. Other early physical evidence of a biogenic substance is graphite in 3.7 billion-year-old meta-sedimentary rocks discovered in Western Greenland. More recently, in 2015, "remains of biotic life" were found in 4.1 billion-year-old rocks in Western Australia. According to one of the researchers, "If life arose relatively quickly on Earth...then it could be common in the universe."[3]

Since life began on Earth, five major mass extinctions and several minor events have led to large and sudden drops in biodiversity. The Phanerozoic aeon (the last 540 million years) marked a rapid growth in biodiversity via the Cambrian explosion—a period during which the majority of multicellular phyla first appeared. The next 400 million years included repeated, massive biodiversity losses classified as mass extinction events. In the Carboniferous, rainforest collapse led to a great loss of plant and animal life. The Permian–Triassic extinction event, 251 million years ago, was the worst; vertebrate recovery took 30 million years. The most recent, the Cretaceous–Paleogene extinction event, occurred 65 million years ago and has often attracted more attention than others because it resulted in the extinction of the non-avian dinosaurs.

The period since the emergence of humans has displayed an ongoing biodiversity loss and an accompanying loss of genetic diversity. This process is often referred to as Holocene extinction, or sixth mass extinction. Biodiversity loss is also "one of the most critical manifestations of the Anthropocene"[4] a new proposed geological epoch which is thought to have started around the 1950s. The reduction is caused primarily by human impacts, particularly habitat destruction.

History of the term edit

  • 1916 – The term biological diversity was used first by J. Arthur Harris in "The Variable Desert," Scientific American: "The bare statement that the region contains a flora rich in genera and species and of diverse geographic origin or affinity is entirely inadequate as a description of its real biological diversity."[5]
  • 1967 – Raymond F. Dasmann used the term biological diversity in reference to the richness of living nature that conservationists should protect in his book A Different Kind of Country.[6][7]
  • 1974 – The term natural diversity was introduced by John Terborgh.[8]
  • 1980 – Thomas Lovejoy introduced the term biological diversity to the scientific community in a book.[9] It rapidly became commonly used.[10]
  • 1985 – According to Edward O. Wilson, the contracted form biodiversity was coined by W. G. Rosen: "The National Forum on BioDiversity ... was conceived by Walter G.Rosen ... Dr. Rosen represented the NRC/NAS throughout the planning stages of the project. Furthermore, he introduced the term biodiversity".[11]
  • 1985 – The term "biodiversity" appears in the article, "A New Plan to Conserve the Earth's Biota" by Laura Tangley.[12]
  • 1988 – The term biodiversity first appeared in publication.[13][14]
  • 1988 to Present – The United Nations Environment Programme (UNEP) Ad Hoc Working Group of Experts on Biological Diversity in began working in November 1988, leading to the publication of the draft Convention on Biological Diversity in May 1992. Since this time, there have been 15 Conferences of the Parties (COPs) to discuss potential global political responses to biodiversity loss. Most recently COP 15 in Montreal, Canada in 2022.

Definitions edit

Biologists most often define biodiversity as the "totality of genes, species and ecosystems of a region".[15][16] An advantage of this definition is that it presents a unified view of the traditional types of biological variety previously identified:

Biodiversity is most commonly used to replace the more clearly-defined and long-established terms, species diversity and species richness.[20]

Other definitions include (in chronological order):

  • An explicit definition consistent with this interpretation was first given in a paper by Bruce A. Wilcox commissioned by the International Union for the Conservation of Nature and Natural Resources (IUCN) for the 1982 World National Parks Conference.[21] Wilcox's definition was "Biological diversity is the variety of life forms...at all levels of biological systems (i.e., molecular, organismic, population, species and ecosystem)...".[21]
  • A publication by Wilcox in 1984: Biodiversity can be defined genetically as the diversity of alleles, genes and organisms. They study processes such as mutation and gene transfer that drive evolution.[21]
  • The 1992 United Nations Earth Summit defined biological diversity as "the variability among living organisms from all sources, including, inter alia, terrestrial, marine and other aquatic ecosystems and the ecological complexes of which they are part: this includes diversity within species, between species and of ecosystems".[22] This definition is used in the United Nations Convention on Biological Diversity.[22]
  • Gaston and Spicer's definition in their book "Biodiversity: an introduction" in 2004 is "variation of life at all levels of biological organization".[23]
  • The Food and Agriculture Organization of the United Nations (FAO) defined biodiversity in 2019 as "the variability that exists among living organisms (both within and between species) and the ecosystems of which they are part."[24]

Number of species edit

 
Discovered and predicted total number of species on land and in the oceans

According to Mora and colleagues' estimation, there are approximately 8.7 million terrestrial species and 2.2 million oceanic species. The authors note that these estimates are strongest for eukaryotic organisms and likely represent the lower bound of prokaryote diversity.[25] Other estimates include:

  • 220,000 vascular plants, estimated using the species-area relation method[26]
  • 0.7-1 million marine species[27]
  • 10–30 million insects;[28] (of some 0.9 million we know today)[29]
  • 5–10 million bacteria;[30]
  • 1.5-3 million fungi, estimates based on data from the tropics, long-term non-tropical sites and molecular studies that have revealed cryptic speciation.[31] Some 0.075 million species of fungi had been documented by 2001;[32]
  • 1 million mites[33]
  • The number of microbial species is not reliably known, but the Global Ocean Sampling Expedition dramatically increased the estimates of genetic diversity by identifying an enormous number of new genes from near-surface plankton samples at various marine locations, initially over the 2004–2006 period.[34] The findings may eventually cause a significant change in the way science defines species and other taxonomic categories.[35][36]

Since the rate of extinction has increased, many extant species may become extinct before they are described.[37] Not surprisingly, in the animalia the most studied groups are birds and mammals, whereas fishes and arthropods are the least studied animals groups.[38]

Current biodiversity loss edit

 
The World Wildlife Fund's Living Planet Report 2022 found that wildlife populations declined by an average 69% since 1970.[39][40][41]

During the last century, decreases in biodiversity have been increasingly observed. It was estimated in 2007 that up to 30% of all species will be extinct by 2050.[42] Of these, about one eighth of known plant species are threatened with extinction.[43] Estimates reach as high as 140,000 species per year (based on Species-area theory).[44] This figure indicates unsustainable ecological practices, because few species emerge each year.[citation needed] The rate of species loss is greater now than at any time in human history, with extinctions occurring at rates hundreds of times higher than background extinction rates.[43][45][46] and expected to still grow in the upcoming years.[46][47][48] As of 2012, some studies suggest that 25% of all mammal species could be extinct in 20 years.[49]

In absolute terms, the planet has lost 58% of its biodiversity since 1970 according to a 2016 study by the World Wildlife Fund.[50] The Living Planet Report 2014 claims that "the number of mammals, birds, reptiles, amphibians, and fish across the globe is, on average, about half the size it was 40 years ago". Of that number, 39% accounts for the terrestrial wildlife gone, 39% for the marine wildlife gone and 76% for the freshwater wildlife gone. Biodiversity took the biggest hit in Latin America, plummeting 83 percent. High-income countries showed a 10% increase in biodiversity, which was canceled out by a loss in low-income countries. This is despite the fact that high-income countries use five times the ecological resources of low-income countries, which was explained as a result of a process whereby wealthy nations are outsourcing resource depletion to poorer nations, which are suffering the greatest ecosystem losses.[51]

A 2017 study published in PLOS One found that the biomass of insect life in Germany had declined by three-quarters in the last 25 years.[52] Dave Goulson of Sussex University stated that their study suggested that humans "appear to be making vast tracts of land inhospitable to most forms of life, and are currently on course for ecological Armageddon. If we lose the insects then everything is going to collapse."[53]

In 2020 the World Wildlife Foundation published a report saying that "biodiversity is being destroyed at a rate unprecedented in human history". The report claims that 68% of the population of the examined species were destroyed in the years 1970 – 2016.[54]

Of 70,000 monitored species, around 48% are experiencing population declines from human activity (in 2023), whereas only 3% have increasing populations.[55][56][57]

 
Summary of major biodiversity-related environmental-change categories expressed as a percentage of human-driven change (in red) relative to baseline (blue)

Rates of decline in biodiversity in the current sixth mass extinction match or exceed rates of loss in the five previous mass extinction events in the fossil record.[67] Biodiversity loss is in fact "one of the most critical manifestations of the Anthropocene" (since around the 1950s); the continued decline of biodiversity constitutes "an unprecedented threat" to the continued existence of human civilization.[4]

Loss of biodiversity results in the loss of natural capital that supplies ecosystem goods and services. Species today are being wiped out at a rate 100 to 1,000 times higher than baseline, and the rate of extinctions is increasing. This process destroys the resilience and adaptability of life on Earth.[68]

In 2006, many species were formally classified as rare or endangered or threatened; moreover, scientists have estimated that millions more species are at risk which have not been formally recognized. About 40 percent of the 40,177 species assessed using the IUCN Red List criteria are now listed as threatened with extinction—a total of 16,119.[69] As of late 2022 9251 species were considered part of the IUCN's critically endangered.[70]

Numerous scientists and the IPBES Global Assessment Report on Biodiversity and Ecosystem Services assert that human population growth and overconsumption are the primary factors in this decline.[71][72][73][74][75] However, other scientists have criticized this finding and say that loss of habitat caused by "the growth of commodities for export" is the main driver.[76]

Some studies have however pointed out that habitat destruction for the expansion of agriculture and the overexploitation of wildlife are the more significant drivers of contemporary biodiversity loss, not climate change.[77][78]

Distribution edit

 
Distribution of living terrestrial vertebrate species, highest concentration of diversity shown in red in equatorial regions, declining polewards (towards the blue end of the spectrum)

Biodiversity is not evenly distributed, rather it varies greatly across the globe as well as within regions. Among other factors, the diversity of all living things (biota) depends on temperature, precipitation, altitude, soils, geography and the interactions between other species.[79] The study of the spatial distribution of organisms, species and ecosystems, is the science of biogeography.[80][81]

Diversity consistently measures higher in the tropics and in other localized regions such as the Cape Floristic Region and lower in polar regions generally. Rain forests that have had wet climates for a long time, such as Yasuní National Park in Ecuador, have particularly high biodiversity.[82][83]

Terrestrial biodiversity is thought to be up to 25 times greater than ocean biodiversity.[84] Forests harbour most of Earth's terrestrial biodiversity. The conservation of the world's biodiversity is thus utterly dependent on the way in which we interact with and use the world's forests.[85] A new method used in 2011, put the total number of species on Earth at 8.7 million, of which 2.1 million were estimated to live in the ocean.[86] However, this estimate seems to under-represent the diversity of microorganisms.[87] Forests provide habitats for 80 percent of amphibian species, 75 percent of bird species and 68 percent of mammal species. About 60 percent of all vascular plants are found in tropical forests. Mangroves provide breeding grounds and nurseries for numerous species of fish and shellfish and help trap sediments that might otherwise adversely affect seagrass beds and coral reefs, which are habitats for many more marine species.[85] Forests span around 4 billion acres (nearly a third of the earth's land mass) and are home to approximately 80% of the world's biodiversity. About 1 billion hectares are covered by primary forests. Over 700 million hectares of the world's woods are officially protected.[88][89]

The biodiversity of forests varies considerably according to factors such as forest type, geography, climate and soils – in addition to human use.[85] Most forest habitats in temperate regions support relatively few animal and plant species and species that tend to have large geographical distributions, while the montane forests of Africa, South America and Southeast Asia and lowland forests of Australia, coastal Brazil, the Caribbean islands, Central America and insular Southeast Asia have many species with small geographical distributions.[85] Areas with dense human populations and intense agricultural land use, such as Europe, parts of Bangladesh, China, India and North America, are less intact in terms of their biodiversity. Northern Africa, southern Australia, coastal Brazil, Madagascar and South Africa, are also identified as areas with striking losses in biodiversity intactness.[85] European forests in EU and non-EU nations comprise more than 30% of Europe's land mass (around 227 million hectares), representing an almost 10% growth since 1990.[90][91]

Latitudinal gradients edit

Generally, there is an increase in biodiversity from the poles to the tropics. Thus localities at lower latitudes have more species than localities at higher latitudes. This is often referred to as the latitudinal gradient in species diversity. Several ecological factors may contribute to the gradient, but the ultimate factor behind many of them is the greater mean temperature at the equator compared to that at the poles.[92]

Even though terrestrial biodiversity declines from the equator to the poles,[93] some studies claim that this characteristic is unverified in aquatic ecosystems, especially in marine ecosystems.[94] The latitudinal distribution of parasites does not appear to follow this rule.[80] Also, in terrestrial ecosystems the soil bacterial diversity has been shown to be highest in temperate climatic zones,[95] and has been attributed to carbon inputs and habitat connectivity.[96]

In 2016, an alternative hypothesis ("the fractal biodiversity") was proposed to explain the biodiversity latitudinal gradient.[97] In this study, the species pool size and the fractal nature of ecosystems were combined to clarify some general patterns of this gradient. This hypothesis considers temperature, moisture, and net primary production (NPP) as the main variables of an ecosystem niche and as the axis of the ecological hypervolume. In this way, it is possible to build fractal hyper volumes, whose fractal dimension rises to three moving towards the equator.[98]

Biodiversity Hotspot edit

A biodiversity hotspot is a region with a high level of endemic species that have experienced great habitat loss.[99] The term hotspot was introduced in 1988 by Norman Myers.[100][101][102][103] While hotspots are spread all over the world, the majority are forest areas and most are located in the tropics.

Brazil's Atlantic Forest is considered one such hotspot, containing roughly 20,000 plant species, 1,350 vertebrates and millions of insects, about half of which occur nowhere else.[104][105] The island of Madagascar and India are also particularly notable. Colombia is characterized by high biodiversity, with the highest rate of species by area unit worldwide and it has the largest number of endemics (species that are not found naturally anywhere else) of any country. About 10% of the species of the Earth can be found in Colombia, including over 1,900 species of bird, more than in Europe and North America combined, Colombia has 10% of the world's mammals species, 14% of the amphibian species and 18% of the bird species of the world.[106] Madagascar dry deciduous forests and lowland rainforests possess a high ratio of endemism.[107][108] Since the island separated from mainland Africa 66 million years ago, many species and ecosystems have evolved independently.[109] Indonesia's 17,000 islands cover 735,355 square miles (1,904,560 km2) and contain 10% of the world's flowering plants, 12% of mammals and 17% of reptiles, amphibians and birds—along with nearly 240 million people.[110] Many regions of high biodiversity and/or endemism arise from specialized habitats which require unusual adaptations, for example, alpine environments in high mountains, or Northern European peat bogs.[108]

Accurately measuring differences in biodiversity can be difficult. Selection bias amongst researchers may contribute to biased empirical research for modern estimates of biodiversity. In 1768, Rev. Gilbert White succinctly observed of his Selborne, Hampshire "all nature is so full, that that district produces the most variety which is the most examined."[111]

Evolution edit

History edit

Biodiversity is the result of 3.5 billion years of evolution.[112] The origin of life has not been established by science, however, some evidence suggests that life may already have been well-established only a few hundred million years after the formation of the Earth. Until approximately 2.5 billion years ago, all life consisted of microorganismsarchaea, bacteria, and single-celled protozoans and protists.[87]

 
Apparent marine fossil diversity during the Phanerozoic[113]

The history of biodiversity during the Phanerozoic (the last 540 million years), starts with rapid growth during the Cambrian explosion—a period during which nearly every phylum of multicellular organisms first appeared.[114] Over the next 400 million years or so, invertebrate diversity showed little overall trend and vertebrate diversity shows an overall exponential trend.[17] This dramatic rise in diversity was marked by periodic, massive losses of diversity classified as mass extinction events.[17] A significant loss occurred when rainforests collapsed in the carboniferous.[115] The worst was the Permian-Triassic extinction event, 251 million years ago. Vertebrates took 30 million years to recover from this event.[116]

The biodivertisy of the past is called Paleobiodiversity. The fossil record suggests that the last few million years featured the greatest biodiversity in history.[17] However, not all scientists support this view, since there is uncertainty as to how strongly the fossil record is biased by the greater availability and preservation of recent geologic sections.[117] Some scientists believe that corrected for sampling artifacts, modern biodiversity may not be much different from biodiversity 300 million years ago,[114] whereas others consider the fossil record reasonably reflective of the diversification of life.[17] Estimates of the present global macroscopic species diversity vary from 2 million to 100 million, with a best estimate of somewhere near 9 million,[86] the vast majority arthropods.[118] Diversity appears to increase continually in the absence of natural selection.[119]

Diversification edit

The existence of a global carrying capacity, limiting the amount of life that can live at once, is debated, as is the question of whether such a limit would also cap the number of species. While records of life in the sea show a logistic pattern of growth, life on land (insects, plants and tetrapods) shows an exponential rise in diversity.[17] As one author states, "Tetrapods have not yet invaded 64 percent of potentially habitable modes and it could be that without human influence the ecological and taxonomic diversity of tetrapods would continue to increase exponentially until most or all of the available eco-space is filled."[17]

It also appears that the diversity continues to increase over time, especially after mass extinctions.[120]

On the other hand, changes through the Phanerozoic correlate much better with the hyperbolic model (widely used in population biology, demography and macrosociology, as well as fossil biodiversity) than with exponential and logistic models. The latter models imply that changes in diversity are guided by a first-order positive feedback (more ancestors, more descendants) and/or a negative feedback arising from resource limitation. Hyperbolic model implies a second-order positive feedback.[121] Differences in the strength of the second-order feedback due to different intensities of interspecific competition might explain the faster rediversification of ammonoids in comparison to bivalves after the end-Permian extinction.[121] The hyperbolic pattern of the world population growth arises from a second-order positive feedback between the population size and the rate of technological growth.[122] The hyperbolic character of biodiversity growth can be similarly accounted for by a feedback between diversity and community structure complexity.[122][123] The similarity between the curves of biodiversity and human population probably comes from the fact that both are derived from the interference of the hyperbolic trend with cyclical and stochastic dynamics.[122][123]

Most biologists agree however that the period since human emergence is part of a new mass extinction, named the Holocene extinction event, caused primarily by the impact humans are having on the environment.[124] It has been argued that the present rate of extinction is sufficient to eliminate most species on the planet Earth within 100 years.[125]

New species are regularly discovered (on average between 5–10,000 new species each year, most of them insects) and many, though discovered, are not yet classified (estimates are that nearly 90% of all arthropods are not yet classified).[118] Most of the terrestrial diversity is found in tropical forests and in general, the land has more species than the ocean; some 8.7 million species may exist on Earth, of which some 2.1 million live in the ocean.[86]

Role and benefits of biodiversity edit

 
Summer field in Belgium (Hamois). The blue flowers are Centaurea cyanus and the red are Papaver rhoeas.

General ecosystem services edit

From the perspective of the method known as Natural Economy the economic value of 17 ecosystem services for Earth's biosphere (calculated in 1997) has an estimated value of US$33 trillion (3.3x1013) per year.[126]

"Ecosystem services are the suite of benefits that ecosystems provide to humanity."[127] The natural species, or biota, are the caretakers of all ecosystems. It is as if the natural world is an enormous bank account of capital assets capable of paying life sustaining dividends indefinitely, but only if the capital is maintained.[128] These services come in three flavors:

  1. Provisioning services which involve the production of renewable resources (e.g.: food, wood, fresh water)[127]
  2. Regulating services which are those that lessen environmental change (e.g.: climate regulation, pest/disease control)[127]
  3. Cultural services represent human value and enjoyment (e.g.: landscape aesthetics, cultural heritage, outdoor recreation and spiritual significance)[129]

There have been many claims about biodiversity's effect on these ecosystem services, especially provisioning and regulating services.[127] After an exhaustive survey through peer-reviewed literature to evaluate 36 different claims about biodiversity's effect on ecosystem services, 14 of those claims have been validated, 6 demonstrate mixed support or are unsupported, 3 are incorrect and 13 lack enough evidence to draw definitive conclusions.[127]

Services enhanced edit

Provisioning services

Greater species diversity

  • of plants increases fodder yield (synthesis of 271 experimental studies).[81]
  • of plants (i.e. diversity within a single species) increases overall crop yield (synthesis of 575 experimental studies).[130] Although another review of 100 experimental studies reports mixed evidence.[131]
  • of trees increases overall wood production (Synthesis of 53 experimental studies).[132] However, there is not enough data to draw a conclusion about the effect of tree trait diversity on wood production.[127]
Regulating services

Greater species diversity

  • of fish increases the stability of fisheries yield (Synthesis of 8 observational studies)[127]
  • of natural pest enemies decreases herbivorous pest populations (Data from two separate reviews; Synthesis of 266 experimental and observational studies;[133] Synthesis of 18 observational studies.[134][135] Although another review of 38 experimental studies found mixed support for this claim, suggesting that in cases where mutual intraguild predation occurs, a single predatory species is often more effective[136]
  • of plants decreases disease prevalence on plants (Synthesis of 107 experimental studies)[137]
  • of plants increases resistance to plant invasion (Data from two separate reviews; Synthesis of 105 experimental studies;[137] Synthesis of 15 experimental studies[138])
  • of plants increases carbon sequestration, but note that this finding only relates to actual uptake of carbon dioxide and not long-term storage, see below; Synthesis of 479 experimental studies)[81]
  • plants increases soil nutrient remineralization (Synthesis of 103 experimental studies)[137]
  • of plants increases soil organic matter (Synthesis of 85 experimental studies)[137]

Services with mixed evidence edit

Provisioning services
  • None to date
Regulating services
  • Greater species diversity of plants may or may not decrease herbivorous pest populations. Data from two separate reviews suggest that greater diversity decreases pest populations (Synthesis of 40 observational studies;[139] Synthesis of 100 experimental studies).[131] One review found mixed evidence (Synthesis of 287 experimental studies[140]), while another found contrary evidence (Synthesis of 100 experimental studies[137])
  • Greater species diversity of animals may or may not decrease disease prevalence on those animals (Synthesis of 45 experimental and observational studies),[141] although a 2013 study offers more support showing that biodiversity may in fact enhance disease resistance within animal communities, at least in amphibian frog ponds.[142] Many more studies must be published in support of diversity to sway the balance of evidence will be such that we can draw a general rule on this service.
  • Greater species and trait diversity of plants may or may not increase long term carbon storage (Synthesis of 33 observational studies)[127]
  • Greater pollinator diversity may or may not increase pollination (Synthesis of 7 observational studies),[127] but a publication from March 2013 suggests that increased native pollinator diversity enhances pollen deposition (although not necessarily fruit set as the authors would have you believe, for details explore their lengthy supplementary material).[143]

Services hindered edit

Provisioning services
  • Greater species diversity of plants reduces primary production (Synthesis of 7 experimental studies)[81]
Regulating services
  • greater genetic and species diversity of a number of organisms reduces freshwater purification (Synthesis of 8 experimental studies, although an attempt by the authors to investigate the effect of detritivore diversity on freshwater purification was unsuccessful due to a lack of available evidence (only 1 observational study was found[127]
  • Effect of species diversity of plants on biofuel yield (In a survey of the literature, the investigators only found 3 studies)[127]
  • Effect of species diversity of fish on fishery yield (In a survey of the literature, the investigators only found 4 experimental studies and 1 observational study)[127]
Regulating services
  • Effect of species diversity on the stability of biofuel yield (In a survey of the literature, the investigators did not find any studies)[127]
  • Effect of species diversity of plants on the stability of fodder yield (In a survey of the literature, the investigators only found 2 studies)[127]
  • Effect of species diversity of plants on the stability of crop yield (In a survey of the literature, the investigators only found 1 study)[127]
  • Effect of genetic diversity of plants on the stability of crop yield (In a survey of the literature, the investigators only found 2 studies)[127]
  • Effect of diversity on the stability of wood production (In a survey of the literature, the investigators could not find any studies)[127]
  • Effect of species diversity of multiple taxa on erosion control (In a survey of the literature, the investigators could not find any studies – they did, however, find studies on the effect of species diversity and root biomass)[127]
  • Effect of diversity on flood regulation (In a survey of the literature, the investigators could not find any studies)[127]
  • Effect of species and trait diversity of plants on soil moisture (In a survey of the literature, the investigators only found 2 studies)[127]

Other sources have reported somewhat conflicting results and in 1997 Robert Costanza and his colleagues reported the estimated global value of ecosystem services (not captured in traditional markets) at an average of $33 trillion annually.[144]

Since the Stone Age, species loss has accelerated above the average basal rate, driven by human activity. Estimates of species losses are at a rate 100–10,000 times as fast as is typical in the fossil record.[145] Biodiversity also affords many non-material benefits including spiritual and aesthetic values, knowledge systems and education.[145]

Agriculture edit

 
Amazon Rainforest in South America

Agricultural diversity can be divided into two categories: intraspecific diversity, which includes the genetic variation within a single species, like the potato (Solanum tuberosum) that is composed of many different forms and types (e.g. in the U.S. they might compare russet potatoes with new potatoes or purple potatoes, all different, but all part of the same species, S. tuberosum).

The other category of agricultural diversity is called interspecific diversity and refers to the number and types of different species. Thinking about this diversity we might note that many small vegetable farmers grow many different crops like potatoes and also carrots, peppers, lettuce, etc.

Agricultural diversity can also be divided by whether it is 'planned' diversity or 'associated' diversity. This is a functional classification that we impose and not an intrinsic feature of life or diversity. Planned diversity includes the crops which a farmer has encouraged, planted or raised (e.g. crops, covers, symbionts, and livestock, among others), which can be contrasted with the associated diversity that arrives among the crops, uninvited (e.g. herbivores, weed species and pathogens, among others).[146]

Associated biodiversity can be damaging or beneficial. The beneficial associated biodiversity include for instance wild pollinators such as wild bees and syrphid flies that pollinate crops[147] and natural enemies and antagonists to pests and pathogens. Beneficial associated biodiversity occurs abundantly in crop fields and provide multiple ecosystem services such as pest control, nutrient cycling and pollination that support crop production.[148]

The control of damaging associated biodiversity is one of the great agricultural challenges that farmers face. On monoculture farms, the approach is generally to suppress damaging associated diversity using a suite of biologically destructive pesticides, mechanized tools and transgenic engineering techniques, then to rotate crops. Although some polyculture farmers use the same techniques, they also employ integrated pest management strategies as well as more labor-intensive strategies, but generally less dependent on capital, biotechnology, and energy.

Interspecific crop diversity is, in part, responsible for offering variety in what we eat. Intraspecific diversity, the variety of alleles within a single species, also offers us a choice in our diets. If a crop fails in a monoculture, we rely on agricultural diversity to replant the land with something new. If a wheat crop is destroyed by a pest we may plant a hardier variety of wheat the next year, relying on intraspecific diversity. We may forgo wheat production in that area and plant a different species altogether, relying on interspecific diversity. Even an agricultural society that primarily grows monocultures relies on biodiversity at some point.

  • The Irish potato blight of 1846 was a major factor in the deaths of one million people and the emigration of about two million. It was the result of planting only two potato varieties, both vulnerable to the blight, Phytophthora infestans, which arrived in 1845[146]
  • When rice grassy stunt virus struck rice fields from Indonesia to India in the 1970s, 6,273 varieties were tested for resistance.[149] Only one was resistant, an Indian variety and known to science only since 1966.[149] This variety formed a hybrid with other varieties and is now widely grown.[149]
  • Coffee rust attacked coffee plantations in Sri Lanka, Brazil and Central America in 1970. A resistant variety was found in Ethiopia.[150] The diseases are themselves a form of biodiversity.

Monoculture was a contributing factor to several agricultural disasters, including the European wine industry collapse in the late 19th century and the US southern corn leaf blight epidemic of 1970.[151]

Although about 80 percent of humans' food supply comes from just 20 kinds of plants,[152] humans use at least 40,000 species.[153] Earth's surviving biodiversity provides resources for increasing the range of food and other products suitable for human use, although the present extinction rate shrinks that potential.[125]

Human health edit

 
The diverse forest canopy on Barro Colorado Island, Panama, yielded this display of different fruit

Biodiversity's relevance to human health is becoming an international political issue, as scientific evidence builds on the global health implications of biodiversity loss.[154][155][156] This issue is closely linked with the issue of climate change,[157] as many of the anticipated health risks of climate change are associated with changes in biodiversity (e.g. changes in populations and distribution of disease vectors, scarcity of fresh water, impacts on agricultural biodiversity and food resources etc.). This is because the species most likely to disappear are those that buffer against infectious disease transmission, while surviving species tend to be the ones that increase disease transmission, such as that of West Nile Virus, Lyme disease and Hantavirus, according to a study done co-authored by Felicia Keesing, an ecologist at Bard College and Drew Harvell, associate director for Environment of the Atkinson Center for a Sustainable Future (ACSF) at Cornell University.[158]

The growing demand and lack of drinkable water on the planet presents an additional challenge to the future of human health. Partly, the problem lies in the success of water suppliers to increase supplies and failure of groups promoting the preservation of water resources.[159] While the distribution of clean water increases, in some parts of the world it remains unequal. According to the World Health Organisation (2018), only 71% of the global population used a safely managed drinking-water service.[160]

Some of the health issues influenced by biodiversity include dietary health and nutrition security, infectious disease, medical science and medicinal resources, social and psychological health.[161] Biodiversity is also known to have an important role in reducing disaster risk and in post-disaster relief and recovery efforts.[162][163]

According to the United Nations Environment Programme a pathogen, like a virus, have more chances to meet resistance in a diverse population.Therefore, in a population genetically similar it expands more easily. For example, the COVID-19 pandemic had less chances to occur in a world with higher biodiversity.[164] A broad literature review published in 2010 by Nature (journal), Impacts of biodiversity on the emergence and transmission of infectious disease, found this to be broadly true within real environments.[165] Although some small population exceptions were found to exist, on average a collapse in biodiversity significantly increased the spread & spillover of infectious diseases.

Biodiversity provides critical support for drug discovery and the availability of medicinal resources.[166][167] A significant proportion of drugs are derived, directly or indirectly, from biological sources: at least 50% of the pharmaceutical compounds on the US market are derived from plants, animals and microorganisms, while about 80% of the world population depends on medicines from nature (used in either modern or traditional medical practice) for primary healthcare.[155] Only a tiny fraction of wild species has been investigated for medical potential. Biodiversity has been critical to advances throughout the field of bionics. Evidence from market analysis and biodiversity science indicates that the decline in output from the pharmaceutical sector since the mid-1980s can be attributed to a move away from natural product exploration ("bioprospecting") in favour of genomics and synthetic chemistry, indeed claims about the value of undiscovered pharmaceuticals may not provide enough incentive for companies in free markets to search for them because of the high cost of development;[168] meanwhile, natural products have a long history of supporting significant economic and health innovation.[169][170] Marine ecosystems are particularly important,[171] although inappropriate bioprospecting can increase biodiversity loss, as well as violating the laws of the communities and states from which the resources are taken.[172][173][174]

Business and industry edit

 
Agriculture production, pictured is a tractor and a chaser bin

Many industrial materials derive directly from biological sources. These include building materials, fibers, dyes, rubber, and oil. Biodiversity is also important to the security of resources such as water, timber, paper, fiber, and food.[175][176][177] As a result, biodiversity loss is a significant risk factor in business development and a threat to long-term economic sustainability.[178][179]

Leisure, cultural and aesthetic value edit

Biodiversity enriches leisure activities such as birdwatching or natural history study.

Popular activities such as gardening and fishkeeping strongly depend on biodiversity. The number of species involved in such pursuits is in the tens of thousands, though the majority do not enter commerce.[clarification needed]

The relationships between the original natural areas of these often exotic animals and plants and commercial collectors, suppliers, breeders, propagators and those who promote their understanding and enjoyment are complex and poorly understood. The general public responds well to exposure to rare and unusual organisms, reflecting their inherent value.

Philosophically it could be argued that biodiversity has intrinsic aesthetic and spiritual value to mankind in and of itself. This idea can be used as a counterweight to the notion that tropical forests and other ecological realms are only worthy of conservation because of the services they provide.[180]

 
Eagle Creek, Oregon hiking

Ecological services edit

Biodiversity supports many ecosystem services:

"There is now unequivocal evidence that biodiversity loss reduces the efficiency by which ecological communities capture biologically essential resources, produce biomass, decompose and recycle biologically essential nutrients... There is mounting evidence that biodiversity increases the stability of ecosystem functions through time... Diverse communities are more productive because they contain key species that have a large influence on productivity and differences in functional traits among organisms increase total resource capture... The impacts of diversity loss on ecological processes might be sufficiently large to rival the impacts of many other global drivers of environmental change... Maintaining multiple ecosystem processes at multiple places and times requires higher levels of biodiversity than does a single process at a single place and time."[127]

It plays a part in regulating the chemistry of our atmosphere and water supply. Biodiversity is directly involved in water purification, recycling nutrients and providing fertile soils. Experiments with controlled environments have shown that humans cannot easily build ecosystems to support human needs;[181] for example insect pollination cannot be mimicked, though there have been attempts to create artificial pollinators using unmanned aerial vehicles.[182] The economic activity of pollination alone represented between $2.1–14.6 billion in 2003.[183]

Measuring biodiversity edit

A variety of objective means exist to empirically measure biodiversity. Each measure relates to a particular use of the data, and is likely to be associated with the variety of genes. Biodiversity is commonly measured in terms of taxonomic richness of a geographic area over a time interval. In order to calculate biodiversity, species evenness, species richness, and species diversity are to be obtained first. Species evenness[184] is the relative number of individuals of each species in a given area. Species richness[185] is the number of species present in a given area. Species diversity[186] is the relationship between species evenness and species richness. There are many ways to measure biodiversity within a given ecosystem. However, the two most popular are Shannon-Weaver diversity index,[187] commonly referred to as Shannon diversity index, and the other is Simpsons diversity index.[188] Although many scientists prefer to use Shannon's diversity index simply because it takes into account species richness.[189]

Analytical limits edit

Less than 1% of all species that have been described have been studied beyond noting their existence.[190] The vast majority of Earth's species are microbial. Contemporary biodiversity physics is "firmly fixated on the visible [macroscopic] world".[191] For example, microbial life is metabolically and environmentally more diverse than multicellular life (see e.g., extremophile). "On the tree of life, based on analyses of small-subunit ribosomal RNA, visible life consists of barely noticeable twigs. The inverse relationship of size and population recurs higher on the evolutionary ladder—to a first approximation, all multicellular species on Earth are insects".[192] Insect extinction rates are high—supporting the Holocene extinction hypothesis.[193][194]

Biodiversity changes (other than losses) edit

Introduced and invasive species edit

 
Male Lophura nycthemera (silver pheasant), a native of East Asia that has been introduced into parts of Europe for ornamental reasons

Barriers such as large rivers, seas, oceans, mountains and deserts encourage diversity by enabling independent evolution on either side of the barrier, via the process of allopatric speciation. The term invasive species is applied to species that breach the natural barriers that would normally keep them constrained. Without barriers, such species occupy new territory, often supplanting native species by occupying their niches, or by using resources that would normally sustain native species.

The number of species invasions has been on the rise at least since the beginning of the 1900s. Species are increasingly being moved by humans (on purpose and accidentally). In some cases the invaders are causing drastic changes and damage to their new habitats (e.g.: zebra mussels and the emerald ash borer in the Great Lakes region and the lion fish along the North American Atlantic coast). Some evidence suggests that invasive species are competitive in their new habitats because they are subject to less pathogen disturbance.[195] Others report confounding evidence that occasionally suggest that species-rich communities harbor many native and exotic species simultaneously[196] while some say that diverse ecosystems are more resilient and resist invasive plants and animals.[197] An important question is, "do invasive species cause extinctions?" Many studies cite effects of invasive species on natives,[198] but not extinctions. Invasive species seem to increase local (i.e.: alpha diversity) diversity, which decreases turnover of diversity (i.e.: beta diversity). Overall gamma diversity may be lowered because species are going extinct because of other causes,[199] but even some of the most insidious invaders (e.g.: Dutch elm disease, emerald ash borer, chestnut blight in North America) have not caused their host species to become extinct. Extirpation, population decline and homogenization of regional biodiversity are much more common. Human activities have frequently been the cause of invasive species circumventing their barriers,[200] by introducing them for food and other purposes. Human activities therefore allow species to migrate to new areas (and thus become invasive) occurred on time scales much shorter than historically have been required for a species to extend its range.

Not all introduced species are invasive, nor all invasive species deliberately introduced. In cases such as the zebra mussel, invasion of US waterways was unintentional. In other cases, such as mongooses in Hawaii, the introduction is deliberate but ineffective (nocturnal rats were not vulnerable to the diurnal mongoose). In other cases, such as oil palms in Indonesia and Malaysia, the introduction produces substantial economic benefits, but the benefits are accompanied by costly unintended consequences.

Finally, an introduced species may unintentionally injure a species that depends on the species it replaces. In Belgium, Prunus spinosa from Eastern Europe leafs much sooner than its West European counterparts, disrupting the feeding habits of the Thecla betulae butterfly (which feeds on the leaves). Introducing new species often leaves endemic and other local species unable to compete with the exotic species and unable to survive. The exotic organisms may be predators, parasites, or may outcompete indigenous species for nutrients, water and light.

At present, several countries have already imported so many exotic species, particularly agricultural and ornamental plants, that their indigenous fauna/flora may be outnumbered. For example, the introduction of kudzu from Southeast Asia to Canada and the United States has threatened biodiversity in certain areas.[201] Another example are pines, which have invaded forests, shrublands and grasslands in the southern hemisphere.[202]

Hybridization and genetic pollution edit

 
The Yecoro wheat (right) cultivar is sensitive to salinity, plants resulting from a hybrid cross with cultivar W4910 (left) show greater tolerance to high salinity

Endemic species can be threatened with extinction[203] through the process of genetic pollution, i.e. uncontrolled hybridization, introgression and genetic swamping. Genetic pollution leads to homogenization or replacement of local genomes as a result of either a numerical and/or fitness advantage of an introduced species.[204]

Hybridization and introgression are side-effects of introduction and invasion. These phenomena can be especially detrimental to rare species that come into contact with more abundant ones. The abundant species can interbreed with the rare species, swamping its gene pool. This problem is not always apparent from morphological (outward appearance) observations alone. Some degree of gene flow is normal adaptation and not all gene and genotype constellations can be preserved. However, hybridization with or without introgression may, nevertheless, threaten a rare species' existence.[205][206]

In agriculture and animal husbandry, the Green Revolution popularized the use of conventional hybridization to increase yield. Often hybridized breeds originated in developed countries and were further hybridized with local varieties in the developing world to create high yield strains resistant to local climate and diseases. Local governments and industry have been pushing hybridization. Formerly huge gene pools of various wild and indigenous breeds have collapsed causing widespread genetic erosion and genetic pollution. This has resulted in the loss of genetic diversity and biodiversity as a whole.[207]

Genetically modified organisms contain genetic material that is altered through genetic engineering. Genetically modified crops have become a common source for genetic pollution in not only wild varieties, but also in domesticated varieties derived from classical hybridization.[208][209][210][211][212]

Genetic erosion and genetic pollution have the potential to destroy unique genotypes, threatening future access to food security. A decrease in genetic diversity weakens the ability of crops and livestock to be hybridized to resist disease and survive changes in climate.[207]

Conservation edit

 
A schematic image illustrating the relationship between biodiversity, ecosystem services, human well-being and poverty.[213] The illustration shows where conservation action, strategies, and plans can influence the drivers of the current biodiversity crisis at local, regional, to global scales.
 
The retreat of Aletsch Glacier in the Swiss Alps (situation in 1979, 1991 and 2002), due to global warming.

Conservation biology matured in the mid-20th century as ecologists, naturalists and other scientists began to research and address issues pertaining to global biodiversity declines.[214][215][216]

The conservation ethic advocates management of natural resources for the purpose of sustaining biodiversity in species, ecosystems, the evolutionary process and human culture and society.[61][214][216][217][218]

Conservation biology is reforming around strategic plans to protect biodiversity.[214][219][220][221] Preserving global biodiversity is a priority in strategic conservation plans that are designed to engage public policy and concerns affecting local, regional and global scales of communities, ecosystems and cultures.[222] Action plans identify ways of sustaining human well-being, employing natural capital, market capital and ecosystem services.[223][224]

In the EU Directive 1999/22/EC zoos are described as having a role in the preservation of the biodiversity of wildlife animals by conducting research or participation in breeding programs.[225]

Protection and restoration techniques edit

Removal of exotic species will allow the species that they have negatively impacted to recover their ecological niches. Exotic species that have become pests can be identified taxonomically (e.g., with Digital Automated Identification SYstem (DAISY), using the barcode of life).[226][227] Removal is practical only given large groups of individuals due to the economic cost.

As sustainable populations of the remaining native species in an area become assured, "missing" species that are candidates for reintroduction can be identified using databases such as the Encyclopedia of Life and the Global Biodiversity Information Facility.

  • Biodiversity banking places a monetary value on biodiversity. One example is the Australian Native Vegetation Management Framework.
  • Gene banks are collections of specimens and genetic material. Some banks intend to reintroduce banked species to the ecosystem (e.g., via tree nurseries).[228]
  • Reduction and better targeting of pesticides allows more species to survive in agricultural and urbanized areas.
  • Location-specific approaches may be less useful for protecting migratory species. One approach is to create wildlife corridors that correspond to the animals' movements. National and other boundaries can complicate corridor creation.[229]

Priorities for resource allocation edit

Focusing on limited areas of higher potential biodiversity promises greater immediate return on investment than spreading resources evenly or focusing on areas of little diversity but greater interest in biodiversity.[230]

A second strategy focuses on areas that retain most of their original diversity, which typically require little or no restoration. These are typically non-urbanized, non-agricultural areas. Tropical areas often fit both criteria, given their natively high diversity and relative lack of development.[231]

Protected areas edit

 
Mother and child at an orangutan rehab facility in Malaysia

Protected areas, including forest reserves and biosphere reserves, serve many functions including for affording protection to wild animals and their habitat.[232] Protected areas have been set up all over the world with the specific aim of protecting and conserving plants and animals. Some scientists have called on the global community to designate as protected areas of 30 percent of the planet by 2030, and 50 percent by 2050, in order to mitigate biodiversity loss from anthropogenic causes.[233][234] The target of protecting 30% of the area of the planet by the year 2030 (30 by 30) was adopted by almost 200 countries in the 2022 United Nations Biodiversity Conference. At the moment of adoption (December 2022) 17% of land territory and 10% of ocean territory were protected.[235] In a study published 4 September 2020 in Science Advances researchers mapped out regions that can help meet critical conservation and climate goals.[236]

Protected areas safeguard nature and cultural resources and contribute to livelihoods, particularly at local level. There are over 238 563 designated protected areas worldwide, equivalent to 14.9 percent of the earth's land surface, varying in their extension, level of protection, and type of management (IUCN, 2018).[237]

 
Percentage of forest in legally protected areas (as of 2020).[85]

Forest protected areas are a subset of all protected areas in which a significant portion of the area is forest.[85] This may be the whole or only a part of the protected area.[85] Globally, 18 percent of the world's forest area, or more than 700 million hectares, fall within legally established protected areas such as national parks, conservation areas and game reserves.[85]

The benefits of protected areas extend beyond their immediate environment and time. In addition to conserving nature, protected areas are crucial for securing the long-term delivery of ecosystem services. They provide numerous benefits including the conservation of genetic resources for food and agriculture, the provision of medicine and health benefits, the provision of water, recreation and tourism, and for acting as a buffer against disaster. Increasingly, there is acknowledgement of the wider socioeconomic values of these natural ecosystems and of the ecosystem services they can provide.[238]

Forest protected areas in particular play many important roles including as a provider of habitat, shelter, food and genetic materials, and as a buffer against disaster. They deliver stable supplies of many goods and environmental services. The role of protected areas, especially forest protected areas, in mitigating and adapting to climate change has increasingly been recognized over the last few years. Protected areas not only store and sequester carbon (i.e. the global network of protected areas stores at least 15 percent of terrestrial carbon), but also enable species to adapt to changing climate patterns by providing refuges and migration corridors. Protected areas also protect people from sudden climate events and reduce their vulnerability to weather-induced problems such as floods and droughts (UNEP–WCMC, 2016).

National parks edit

A national park is a large natural or near natural area set aside to protect large-scale ecological processes, which also provide a foundation for environmentally and culturally compatible, spiritual, scientific, educational, recreational and visitor opportunities. These areas are selected by governments or private organizations to protect natural biodiversity along with its underlying ecological structure and supporting environmental processes, and to promote education and recreation. The International Union for Conservation of Nature (IUCN), and its World Commission on Protected Areas (WCPA), has defined "National Park" as its Category II type of protected areas.[239]

National parks are usually owned and managed by national or state governments. In some cases, a limit is placed on the number of visitors permitted to enter certain fragile areas. Designated trails or roads are created. The visitors are allowed to enter only for study, cultural and recreation purposes. Forestry operations, grazing of animals and hunting of animals are regulated and the exploitation of habitat or wildlife is banned.

Wildlife sanctuary edit

Wildlife sanctuaries aim only at the conservation of species and have the following features:

  1. The boundaries of the sanctuaries are not limited by state legislation.
  2. The killing, hunting or capturing of any species is prohibited except by or under the control of the highest authority in the department which is responsible for the management of the sanctuary.
  3. Private ownership may be allowed.
  4. Forestry and other usages can also be permitted.

Forest reserves edit

There is an estimated 726 million ha of forest in protected areas worldwide. Of the six major world regions, South America has the highest share of forests in protected areas, 31 percent.[240]

The forests play a vital role in harboring more than 45,000 floral and 81,000 faunal species of which 5150 floral and 1837 faunal species are endemic.[241] In addition, there are 60,065 different tree species in the world.[242] Plant and animal species confined to a specific geographical area are called endemic species. In forest reserves, rights to activities like hunting and grazing are sometimes given to communities living on the fringes of the forest, who sustain their livelihood partially or wholly from forest resources or products. The unclassed forests cover 6.4 percent of the total forest area and they are marked by the following characteristics:

  1. They are large inaccessible forests.
  2. Many of these are unoccupied.
  3. They are ecologically and economically less important.

Approximately 50 million hectares (or 24%) of European forest land is protected for biodiversity and landscape protection. Forests allocated for soil, water, and other ecosystem services encompass around 72 million hectares (32% of European forest area).[243][244][245]

Steps to conserve the forest cover edit

  1. An extensive reforestation/afforestation programme should be followed.
  2. Alternative environment-friendly sources of fuel energy such as biogas other than wood should be used.
  3. Loss of biodiversity due to forest fire is a major problem, immediate steps to prevent forest fire need to be taken.
  4. Overgrazing by cattle can damage a forest seriously. Therefore, certain steps should be taken to prevent overgrazing by cattle.
  5. Hunting and poaching should be banned.

Zoological parks edit

In zoological parks or zoos, live animals are kept for public recreation, education and conservation purposes. Modern zoos offer veterinary facilities, provide opportunities for threatened species to breed in captivity and usually build environments that simulate the native habitats of the animals in their care. Zoos play a major role in creating awareness about the need to conserve nature.

Botanical gardens edit

In botanical gardens, plants are grown and displayed primarily for scientific and educational purposes. They consist of a collection of living plants, grown outdoors or under glass in greenhouses and conservatories. Also, a botanical garden may include a collection of dried plants or herbarium and such facilities as lecture rooms, laboratories, libraries, museums and experimental or research plantings.

Role of society edit

Transformative change edit

In 2019, a summary for policymakers of the largest, most comprehensive study to date of biodiversity and ecosystem services, the Global Assessment Report on Biodiversity and Ecosystem Services, was published by the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES). It stated that "the state of nature has deteriorated at an unprecedented and accelerating rate". To fix the problem, humanity will need a transformative change, including sustainable agriculture, reductions in consumption and waste, fishing quotas and collaborative water management.[246][247]

Citizen science edit

Citizen science, also known as public participation in scientific research, has been widely used in environmental sciences and is particularly popular in a biodiversity-related context. It has been used to enable scientists to involve the general public in biodiversity research, thereby enabling the scientists to collect data that they would otherwise not have been able to obtain. An online survey of 1,160 CS participants across 63 biodiversity citizen science projects in Europe, Australia and New Zealand reported positive changes in (a) content, process and nature of science knowledge, (b) skills of science inquiry, (c) self-efficacy for science and the environment, (d) interest in science and the environment, (e) motivation for science and the environment and (f) behaviour towards the environment.[248]

Volunteer observers have made significant contributions to on-the-ground knowledge about biodiversity, and recent improvements in technology have helped increase the flow and quality of occurrences from citizen sources. A 2016 study published in Biological Conservation[249] registers the massive contributions that citizen scientists already make to data mediated by the Global Biodiversity Information Facility (GBIF). Despite some limitations of the dataset-level analysis, it is clear that nearly half of all occurrence records shared through the GBIF network come from datasets with significant volunteer contributions. Recording and sharing observations are enabled by several global-scale platforms, including iNaturalist and eBird.[250][251]

Legal status edit

 
A great deal of work is occurring to preserve the natural characteristics of Hopetoun Falls, Australia while continuing to allow visitor access.

International edit

Global agreements such as the Convention on Biological Diversity, give "sovereign national rights over biological resources" (not property). The agreements commit countries to "conserve biodiversity", "develop resources for sustainability" and "share the benefits" resulting from their use. Biodiverse countries that allow bioprospecting or collection of natural products, expect a share of the benefits rather than allowing the individual or institution that discovers/exploits the resource to capture them privately. Bioprospecting can become a type of biopiracy when such principles are not respected.[252]

Sovereignty principles can rely upon what is better known as Access and Benefit Sharing Agreements (ABAs). The Convention on Biodiversity implies informed consent between the source country and the collector, to establish which resource will be used and for what and to settle on a fair agreement on benefit sharing.

On the 19 of December 2022, during the 2022 United Nations Biodiversity Conference every country on earth, with the exception of the United States and the Holy See, signed onto the agreement which includes protecting 30% of land and oceans by 2030 (30 by 30) and 22 other targets intended to reduce biodiversity loss.[235][253][254] The agreement includes also recovering 30% of earth degraded ecosystems and increasing funding for biodiversity issues.[255]

European Union edit

In May 2020, the European Union published its Biodiversity Strategy for 2030. The biodiversity strategy is an essential part of the climate change mitigation strategy of the European Union. From the 25% of the European budget that will go to fight climate change, large part will go to restore biodiversity[221] and nature based solutions.

The EU Biodiversity Strategy for 2030 include the next targets:

  • Protect 30% of the sea territory and 30% of the land territory especially Old-growth forests.
  • Plant 3 billion trees by 2030.
  • Restore at least 25,000 kilometers of rivers, so they will become free flowing.
  • Reduce the use of Pesticides by 50% by 2030.
  • Increase Organic farming. In linked EU program From Farm to Fork it is said, that the target is making 25% of EU agriculture organic, by 2030.[256]
  • Increase biodiversity in agriculture.
  • Give €20 billion per year to the issue and make it part of the business practice.

Approximately half of the global GDP depend on nature. In Europe many parts of the economy that generate trillions of euros per year depend on nature. The benefits of Natura 2000 alone in Europe are €200 – €300 billion per year.[257]

National level laws edit

Biodiversity is taken into account in some political and judicial decisions:

  • The relationship between law and ecosystems is very ancient and has consequences for biodiversity. It is related to private and public property rights. It can define protection for threatened ecosystems, but also some rights and duties (for example, fishing and hunting rights).[citation needed]
  • Law regarding species is more recent. It defines species that must be protected because they may be threatened by extinction. The U.S. Endangered Species Act is an example of an attempt to address the "law and species" issue.
  • Laws regarding gene pools are only about a century old.[258] Domestication and plant breeding methods are not new, but advances in genetic engineering have led to tighter laws covering distribution of genetically modified organisms, gene patents and process patents.[259] Governments struggle to decide whether to focus on for example, genes, genomes, or organisms and species.[citation needed]

Uniform approval for use of biodiversity as a legal standard has not been achieved, however. Bosselman argues that biodiversity should not be used as a legal standard, claiming that the remaining areas of scientific uncertainty cause unacceptable administrative waste and increase litigation without promoting preservation goals.[260]

India passed the Biological Diversity Act in 2002 for the conservation of biological diversity in India. The Act also provides mechanisms for equitable sharing of benefits from the use of traditional biological resources and knowledge.

See also edit

References edit

  1. ^ "What is biodiversity?" (PDF). United Nations Environment Programme, World Conservation Monitoring Centre.
  2. ^ Tracy, Benjamin F. (2000). "Patterns of plant species richness in pasture lands of the northeast United States". Plant Ecology. 149 (2): 169–180. doi:10.1023/a:1026536223478. ISSN 1385-0237. S2CID 26006709.
  3. ^ . apnews.excite.com. 23 October 2015. Archived from the original on 23 October 2015. Retrieved 5 September 2022.
  4. ^ a b Dirzo, Rodolfo; Ceballos, Gerardo; Ehrlich, Paul R. (2022). "Circling the drain: the extinction crisis and the future of humanity". Philosophical Transactions of the Royal Society B. 377 (1857). doi:10.1098/rstb.2021.0378. PMC 9237743. PMID 35757873. S2CID 250055843.
  5. ^ Harris, J. Arthur (1916). "The Variable Desert". The Scientific Monthly. 3 (1): 41–50. JSTOR 6182.
  6. ^ Dasmann, Raymond F. (1967). "A Different Kind of Country". Kirkus Reviews. Retrieved 7 August 2022.
  7. ^ Brown, William Y. Brown (9 August 2011). "Conserving Biological Diversity". Brookings Institution. Retrieved 7 August 2022.
  8. ^ Terbogh, John (1974). "The Preservation of Natural Diversity: The Problem of Extinction Prone Species". BioScience. 24 (12): 715–722. doi:10.2307/1297090. JSTOR 1297090.
  9. ^ Soulé, Michael E.; Wilcox, Bruce A. (1980). Conservation biology: an evolutionary-ecological perspective. Sunder*land, Mass: Sinauer Associates. ISBN 978-0-87893-800-1.
  10. ^ . Nature.org. 18 August 2011. Archived from the original on 19 September 2012. Retrieved 24 September 2011.
  11. ^ Wilson, E. O. (1988). Biodiversity. National Academy Press. p. vi. doi:10.17226/989. ISBN 978-0-309-03739-6. PMID 25032475.
  12. ^ Tangley, Laura (1985). "A New Plan to Conserve the Earth's Biota". BioScience. 35 (6): 334–336+341. doi:10.1093/bioscience/35.6.334. JSTOR 1309899.
  13. ^ Wilson, E.O. (1 January 1988). Biodiversity. National Academies Press. ISBN 978-0-309-03739-6. online edition 13 September 2006 at the Wayback Machine
  14. ^ Global Biodiversity Assessment: Summary for Policy-makers. Cambridge University Press. 1995. ISBN 978-0-521-56481-6. Annex 6, Glossary. Used as source by "Biodiversity", Glossary of terms related to the CBD 10 September 2011 at the Wayback Machine, Belgian Clearing-House Mechanism. Retrieved 26 April 2006.
  15. ^ Tor-Björn Larsson (2001). Biodiversity evaluation tools for European forests. Wiley-Blackwell. p. 178. ISBN 978-87-16-16434-6. Retrieved 28 June 2011.
  16. ^ Davis. Intro To Env Engg (Sie), 4E. McGraw-Hill Education (India) Pvt Ltd. p. 4. ISBN 978-0-07-067117-1. Retrieved 28 June 2011.
  17. ^ a b c d e f g h Sahney, S.; Benton, M.J.; Ferry, Paul (2010). "Links between global taxonomic diversity, ecological diversity and the expansion of vertebrates on land". Biology Letters. 6 (4): 544–547. doi:10.1098/rsbl.2009.1024. PMC 2936204. PMID 20106856.
  18. ^ Campbell, AK (2003). "Save those molecules: molecular biodiversity and life". Journal of Applied Ecology. 40 (2): 193–203. Bibcode:2003JApEc..40..193C. doi:10.1046/j.1365-2664.2003.00803.x.
  19. ^ Lefcheck, Jon (20 October 2014). "What is functional diversity, and why do we care?". sample(ECOLOGY). Retrieved 22 December 2015.
  20. ^ Walker, Brian H. (1992). "Biodiversity and Ecological Redundancy". Conservation Biology. 6 (1): 18–23. Bibcode:1992ConBi...6...18W. doi:10.1046/j.1523-1739.1992.610018.x.
  21. ^ a b c Wilcox, Bruce A. 1984. In situ conservation of genetic resources: determinants of minimum area requirements. In National Parks, Conservation and Development, Proceedings of the World Congress on National Parks, J.A. McNeely and K.R. Miller, Smithsonian Institution Press, pp. 18–30.
  22. ^ a b D. L. Hawksworth (1996). "Biodiversity: measurement and estimation". Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. Springer. 345 (1311): 6. doi:10.1098/rstb.1994.0081. ISBN 978-0-412-75220-9. PMID 7972355. Retrieved 28 June 2011.
  23. ^ Gaston, Kevin J.; Spicer, John I. (13 February 2004). Biodiversity: An Introduction. Wiley. ISBN 978-1-4051-1857-6.
  24. ^ Bélanger, J.; Pilling, D. (2019). The State of the World's Biodiversity for Food and Agriculture (PDF). Rome: FAO. p. 4. ISBN 978-92-5-131270-4.
  25. ^ Mora, Camilo; Tittensor, Derek P.; Adl, Sina; Simpson, Alastair G. B.; Worm, Boris; Mace, Georgina M. (23 August 2011). "How Many Species Are There on Earth and in the Ocean?". PLOS Biology. 9 (8): e1001127. doi:10.1371/journal.pbio.1001127. PMC 3160336. PMID 21886479.
  26. ^ Wilson, J. Bastow; Peet, Robert K.; Dengler, Jürgen; Pärtel, Meelis (1 August 2012). "Plant species richness: the world records". Journal of Vegetation Science. 23 (4): 796–802. Bibcode:2012JVegS..23..796W. doi:10.1111/j.1654-1103.2012.01400.x. S2CID 53548257.
  27. ^ Appeltans, W.; Ahyong, S. T.; Anderson, G; Angel, M. V.; Artois, T.; et al. (2012). "The Magnitude of Global Marine Species Diversity". Current Biology. 22 (23): 2189–2202. doi:10.1016/j.cub.2012.09.036. hdl:1942/14524. PMID 23159596.
  28. ^ "Numbers of Insects (Species and Individuals)". Smithsonian Institution. from the original on 15 January 2024.
  29. ^ Galus, Christine (5 March 2007). "Protection de la biodiversité : un inventaire difficile". Le Monde (in French). from the original on 1 April 2023.
  30. ^ Cheung, Louisa (31 July 2006). "Thousands of microbes in one gulp". BBC NEWS. from the original on 23 December 2022.
  31. ^ Hawksworth, D. L. (24 July 2012). "Global species numbers of fungi: are tropical studies and molecular approaches contributing to a more robust estimate?". Biodiversity and Conservation. 21 (9): 2425–2433. Bibcode:2012BiCon..21.2425H. doi:10.1007/s10531-012-0335-x. S2CID 15087855.
  32. ^ Hawksworth, D (2001). "The magnitude of fungal diversity: The 1.5 million species estimate revisited". Mycological Research. 105 (12): 1422–1432. doi:10.1017/S0953756201004725. S2CID 56122588.
  33. ^ "Acari at University of Michigan Museum of Zoology Web Page". Insects.ummz.lsa.umich.edu. 10 November 2003. Retrieved 21 June 2009.
  34. ^ (PDF). J. Craig Venter Institute. Archived from the original (PDF) on 29 June 2010. Retrieved 29 August 2010.
  35. ^ Mirsky, Steve (21 March 2007). "Naturally Speaking: Finding Nature's Treasure Trove with the Global Ocean Sampling Expedition". Scientific American. Retrieved 4 May 2011.
  36. ^ "Article collections published by the Public Library of Science". PLoS Collections. doi:10.1371/issue.pcol.v06.i02 (inactive 31 January 2024). Archived from the original on 12 September 2012. Retrieved 24 September 2011. {{cite journal}}: Cite journal requires |journal= (help)CS1 maint: DOI inactive as of January 2024 (link)
  37. ^ McKie, Robin (25 September 2005). "Discovery of new species and extermination at high rate". The Guardian. London.
  38. ^ Bautista, Luis M.; Pantoja, Juan Carlos (2005). "What species should we study next?". Bulletin of the British Ecological Society. 36 (4): 27–28. hdl:10261/43928.
  39. ^ "Living Planet Index, World". Our World in Data. 13 October 2022. from the original on 8 October 2023. Data source: World Wildlife Fund (WWF) and Zoological Society of London
  40. ^ Whiting, Kate (17 October 2022). "6 charts that show the state of biodiversity and nature loss - and how we can go 'nature positive'". World Economic Forum. from the original on 25 September 2023.
  41. ^ Regional data from "How does the Living Planet Index vary by region?". Our World in Data. 13 October 2022. from the original on 20 September 2023. Data source: Living Planet Report (2022). World Wildlife Fund (WWF) and Zoological Society of London. -
  42. ^ Gabriel, Sigmar (9 March 2007). "30% of all species lost by 2050". BBC News.
  43. ^ a b Reid, Walter V. (1995). "Reversing the loss of biodiversity: An overview of international measures". Arid Lands Newsletter. Ag.arizona.edu.
  44. ^ Pimm, S. L.; Russell, G. J.; Gittleman, J. L.; Brooks, T. M. (1995). (PDF). Science. 269 (5222): 347–350. Bibcode:1995Sci...269..347P. doi:10.1126/science.269.5222.347. PMID 17841251. S2CID 35154695. Archived from the original (PDF) on 15 July 2011. Retrieved 4 May 2011.
  45. ^ Carrington D (2 February 2021). "Economics of biodiversity review: what are the recommendations?". The Guardian. Retrieved 17 December 2021.
  46. ^ a b Dasgupta, Partha (2021). "The Economics of Biodiversity: The Dasgupta Review Headline Messages" (PDF). UK government. p. 1. Retrieved 16 December 2021. Biodiversity is declining faster than at any time in human history. Current extinction rates, for example, are around 100 to 1,000 times higher than the baseline rate, and they are increasing.
  47. ^ De Vos JM, Joppa LN, Gittleman JL, Stephens PR, Pimm SL (April 2015). "Estimating the normal background rate of species extinction" (PDF). Conservation Biology. 29 (2): 452–62. Bibcode:2015ConBi..29..452D. doi:10.1111/cobi.12380. PMID 25159086. S2CID 19121609.
  48. ^ Ceballos G, Ehrlich PR, Raven PH (June 2020). "Vertebrates on the brink as indicators of biological annihilation and the sixth mass extinction". Proceedings of the National Academy of Sciences of the United States of America. 117 (24): 13596–13602. Bibcode:2020PNAS..11713596C. doi:10.1073/pnas.1922686117. PMC 7306750. PMID 32482862.
  49. ^ "Researches find threat from biodiversity loss equals climate change threat". Winnipeg Free Press. 7 June 2012.
  50. ^ Living Planet Report 2016 Risk and resilience in a new era (PDF) (Report). World Wildlife Fund International. 2016. (PDF) from the original on 7 August 2021. Retrieved 20 July 2022.
  51. ^ (PDF), World Wildlife Fund, archived from the original (PDF) on 6 October 2014, retrieved 4 October 2014
  52. ^ Hallmann, Caspar A.; Sorg, Martin; Jongejans, Eelke; Siepel, Henk; Hofland, Nick; Schwan, Heinz; Stenmans, Werner; Müller, Andreas; Sumser, Hubert; Hörren, Thomas; Goulson, Dave (18 October 2017). "More than 75 percent decline over 27 years in total flying insect biomass in protected areas". PLOS ONE. 12 (10): e0185809. Bibcode:2017PLoSO..1285809H. doi:10.1371/journal.pone.0185809. ISSN 1932-6203. PMC 5646769. PMID 29045418.
  53. ^ Carrington, Damian (18 October 2017). "Warning of 'ecological Armageddon' after dramatic plunge in insect numbers". The Guardian. from the original on 11 July 2022. Retrieved 20 July 2022.
  54. ^ Briggs, Helen (10 September 2020). "Wildlife in 'catastrophic decline' due to human destruction, scientists warn". BBC. Retrieved 3 December 2020.
  55. ^ "Biodiversity: Almost half of animals in decline, research shows". BBC. 23 May 2023. Retrieved 10 June 2023.
  56. ^ Finn, Catherine; Grattarola, Florencia; Pincheira-Donoso, Daniel (2023). "More losers than winners: investigating Anthropocene defaunation through the diversity of population trends". Biological Reviews. 98 (5): 1732–1748. doi:10.1111/brv.12974. PMID 37189305. S2CID 258717720.
  57. ^ Paddison, Laura (22 May 2023). "Global loss of wildlife is 'significantly more alarming' than previously thought, according to a new study". CNN. Retrieved 10 June 2023.
  58. ^ Vignieri, S. (25 July 2014). "Vanishing fauna (Special issue)". Science. 345 (6195): 392–412. Bibcode:2014Sci...345..392V. doi:10.1126/science.345.6195.392. PMID 25061199.
  59. ^ "Strong evidence shows Sixth Mass Extinction of global biodiversity in progress". EurekAlert!. 13 January 2022. Retrieved 17 February 2022.
  60. ^ Dirzo, Rodolfo; Hillary S. Young; Mauro Galetti; Gerardo Ceballos; Nick J. B. Isaac; Ben Collen (2014). "Defaunation in the Anthropocene" (PDF). Science. 345 (6195): 401–406. Bibcode:2014Sci...345..401D. doi:10.1126/science.1251817. PMID 25061202. S2CID 206555761. In the past 500 years, humans have triggered a wave of extinction, threat, and local population declines that may be comparable in both rate and magnitude with the five previous mass extinctions of Earth's history.
  61. ^ a b Wake D. B.; Vredenburg V. T. (2008). "Are we in the midst of the sixth mass extinction? A view from the world of amphibians". Proceedings of the National Academy of Sciences of the United States of America. 105 (Suppl 1): 11466–11473. Bibcode:2008PNAS..10511466W. doi:10.1073/pnas.0801921105. PMC 2556420. PMID 18695221.
  62. ^ Koh, LP; Dunn, RR; Sodhi, NS; Colwell, RK; Proctor, HC; Smith, VS (2004). "Species coextinctions and the biodiversity crisis". Science. 305 (5690): 1632–1634. Bibcode:2004Sci...305.1632K. doi:10.1126/science.1101101. PMID 15361627. S2CID 30713492.[permanent dead link]
  63. ^ McCallum, Malcolm L. (September 2007). "Amphibian Decline or Extinction? Current Declines Dwarf Background Extinction Rate". Journal of Herpetology. 41 (3): 483–491. doi:10.1670/0022-1511(2007)41[483:ADOECD]2.0.CO;2. S2CID 30162903.
  64. ^ Jackson, J. B. C. (2008). "Colloquium Paper: Ecological extinction and evolution in the brave new ocean". Proceedings of the National Academy of Sciences. 105 (Suppl 1): 11458–11465. Bibcode:2008PNAS..10511458J. doi:10.1073/pnas.0802812105. PMC 2556419. PMID 18695220.
  65. ^ Dunn, Robert R. (August 2005). "Modern Insect Extinctions, the Neglected Majority". Conservation Biology. 19 (4): 1030–1036. Bibcode:2005ConBi..19.1030D. doi:10.1111/j.1523-1739.2005.00078.x. S2CID 38218672.
  66. ^ Ceballos, Gerardo; Ehrlich, Paul R.; Barnosky, Anthony D.; García, Andrés; Pringle, Robert M.; Palmer, Todd M. (2015). "Accelerated modern human–induced species losses: Entering the sixth mass extinction". Science Advances. 1 (5): e1400253. Bibcode:2015SciA....1E0253C. doi:10.1126/sciadv.1400253. PMC 4640606. PMID 26601195.
  67. ^ [58][59][60][61][62][63][64][65][66]
  68. ^ UK Government Official Documents, February 2021, "The Economics of Biodiversity: The Dasgupta Review Headline Messages" p. 1
  69. ^ Lovett, Richard A. (2 May 2006). . National Geographic. Archived from the original on 5 August 2017.
  70. ^ "IUCN Red List of Threatened Species".
  71. ^ Stokstad, Erik (6 May 2019). "Landmark analysis documents the alarming global decline of nature". Science. doi:10.1126/science.aax9287. For the first time at a global scale, the report has ranked the causes of damage. Topping the list, changes in land use—principally agriculture—that have destroyed habitat. Second, hunting and other kinds of exploitation. These are followed by climate change, pollution, and invasive species, which are being spread by trade and other activities. Climate change will likely overtake the other threats in the next decades, the authors note. Driving these threats are the growing human population, which has doubled since 1970 to 7.6 billion, and consumption. (Per capita of use of materials is up 15% over the past 5 decades.)
  72. ^ Pimm SL, Jenkins CN, Abell R, Brooks TM, Gittleman JL, Joppa LN, et al. (May 2014). "The biodiversity of species and their rates of extinction, distribution, and protection". Science. 344 (6187): 1246752. doi:10.1126/science.1246752. PMID 24876501. S2CID 206552746. The overarching driver of species extinction is human population growth and increasing per capita consumption.
  73. ^ Cafaro, Philip; Hansson, Pernilla; Götmark, Frank (August 2022). "Overpopulation is a major cause of biodiversity loss and smaller human populations are necessary to preserve what is left" (PDF). Biological Conservation. 272. 109646. Bibcode:2022BCons.27209646C. doi:10.1016/j.biocon.2022.109646. ISSN 0006-3207. S2CID 250185617. Conservation biologists standardly list five main direct drivers of biodiversity loss: habitat loss, overexploitation of species, pollution, invasive species, and climate change. The Global Assessment Report on Biodiversity and Ecosystem Services found that in recent decades habitat loss was the leading cause of terrestrial biodiversity loss, while overexploitation (overfishing) was the most important cause of marine losses (IPBES, 2019). All five direct drivers are important, on land and at sea, and all are made worse by larger and denser human populations.
  74. ^ Crist, Eileen; Mora, Camilo; Engelman, Robert (21 April 2017). "The interaction of human population, food production, and biodiversity protection". Science. 356 (6335): 260–264. Bibcode:2017Sci...356..260C. doi:10.1126/science.aal2011. PMID 28428391. S2CID 12770178. Retrieved 2 January 2023.
  75. ^ Ceballos, Gerardo; Ehrlich, Paul R. (2023). "Mutilation of the tree of life via mass extinction of animal genera". Proceedings of the National Academy of Sciences of the United States of America. 120 (39): e2306987120. Bibcode:2023PNAS..12006987C. doi:10.1073/pnas.2306987120. PMC 10523489. PMID 37722053.
  76. ^ Hughes, Alice C.; Tougeron, Kévin; Martin, Dominic A.; Menga, Filippo; Rosado, Bruno H. P.; Villasante, Sebastian; Madgulkar, Shweta; Gonçalves, Fernando; Geneletti, Davide; Diele-Viegas, Luisa Maria; Berger, Sebastian; Colla, Sheila R.; de Andrade Kamimura, Vitor; Caggiano, Holly; Melo, Felipe (1 January 2023). "Smaller human populations are neither a necessary nor sufficient condition for biodiversity conservation". Biological Conservation. 277: 109841. Bibcode:2023BCons.27709841H. doi:10.1016/j.biocon.2022.109841. ISSN 0006-3207. Through examining the drivers of biodiversity loss in highly biodiverse countries, we show that it is not population driving the loss of habitats, but rather the growth of commodities for export, particularly soybean and oil-palm, primarily for livestock feed or biofuel consumption in higher income economies.
  77. ^ Ketcham, Christopher (3 December 2022). "Addressing Climate Change Will Not "Save the Planet"". The Intercept. Retrieved 8 December 2022.
  78. ^ Caro, Tim; Rowe, Zeke; et al. (2022). "An inconvenient misconception: Climate change is not the principal driver of biodiversity loss". Conservation Letters. 15 (3): e12868. Bibcode:2022ConL...15E2868C. doi:10.1111/conl.12868. S2CID 246172852.
  79. ^ Clay, Keith; Holah, Jenny (10 September 1999). "Fungal Endophyte Symbiosis and Plant Diversity in Successional Fields". Science. 285 (5434): 1742–1744. doi:10.1126/science.285.5434.1742. ISSN 0036-8075. PMID 10481011.
  80. ^ a b Morand, Serge; Krasnov, Boris R. (1 September 2010). The Biogeography of Host-Parasite Interactions. Oxford University Press. pp. 93–94. ISBN 978-0-19-956135-3. Retrieved 28 June 2011.
  81. ^ a b c d Cardinale, Bradley. J.; et al. (March 2011). "The functional role of producer diversity in ecosystems". American Journal of Botany. 98 (3): 572–592. doi:10.3732/ajb.1000364. hdl:2027.42/141994. PMID 21613148. S2CID 10801536.
  82. ^ "A Durable Yet Vulnerable Eden in Amazonia". Dot Earth blog, New York Times. 20 January 2010. Retrieved 2 February 2013.
  83. ^ Margot S. Bass; Matt Finer; Clinton N. Jenkins; Holger Kreft; Diego F. Cisneros-Heredia; Shawn F. McCracken; Nigel C. A. Pitman; Peter H. English; Kelly Swing; Gorky Villa; Anthony Di Fiore; Christian C. Voigt; Thomas H. Kunz (2010). "Global Conservation Significance of Ecuador's Yasuní National Park". PLOS ONE. 5 (1): e8767. Bibcode:2010PLoSO...5.8767B. doi:10.1371/journal.pone.0008767. PMC 2808245. PMID 20098736.
  84. ^ Benton M. J. (2001). "Biodiversity on land and in the sea". Geological Journal. 36 (3–4): 211–230. Bibcode:2001GeolJ..36..211B. doi:10.1002/gj.877. S2CID 140675489.
  85. ^ a b c d e f g h i The State of the World's Forests 2020. In brief – Forests, biodiversity and people. Rome, Italy: FAO & UNEP. 2020. doi:10.4060/ca8985en. ISBN 978-92-5-132707-4. S2CID 241416114.text was added from this source which has a Wikipedia-specific licence statement
  86. ^ a b c Mora, C.; et al. (2011). "How Many Species Are There on Earth and in the Ocean?". PLOS Biology. 9 (8): e1001127. doi:10.1371/journal.pbio.1001127. PMC 3160336. PMID 21886479.
  87. ^ a b Microorganisms Editorial Office (9 January 2019). "Acknowledgement to Reviewers of Microorganisms in 2018". Microorganisms. 7 (1): 13. doi:10.3390/microorganisms7010013. PMC 6352028.
  88. ^ "Global Forest Resource Assessment 2020". Food and Agriculture Organization. Retrieved 30 January 2023.
  89. ^ "The State of the World's Forests 2020: Forests, biodiversity and people [EN/AR/RU] - World | ReliefWeb". reliefweb.int. September 2020. Retrieved 30 January 2023.
  90. ^ "39% of the EU is covered with forests". ec.europa.eu. Retrieved 30 January 2023.
  91. ^ Cavallito, Matteo (8 April 2021). "European forests are expanding. But their future is unwritten". Re Soil Foundation. Retrieved 30 January 2023.
  92. ^ Mora C, Robertson DR (2005). (PDF). Ecology. 86 (7): 1771–1792. Bibcode:2005Ecol...86.1771M. doi:10.1890/04-0883. Archived from the original (PDF) on 4 March 2016. Retrieved 25 December 2012.
  93. ^ Hillebrand H (2004). "On the generality of the latitudinal diversity gradient" (PDF). The American Naturalist. 163 (2): 192–211. doi:10.1086/381004. PMID 14970922. S2CID 9886026.
  94. ^ Karakassis, Ioannis; Moustakas, Aristides (September 2005). "How diverse is aquatic biodiversity research?". Aquatic Ecology. 39 (3): 367–375. Bibcode:2005AqEco..39..367M. doi:10.1007/s10452-005-6041-y. S2CID 23630051.
  95. ^ Bahram, Mohammad; Hildebrand, Falk; Forslund, Sofia K.; Anderson, Jennifer L.; Soudzilovskaia, Nadejda A.; Bodegom, Peter M.; Bengtsson-Palme, Johan; Anslan, Sten; Coelho, Luis Pedro; Harend, Helery; Huerta-Cepas, Jaime; Medema, Marnix H.; Maltz, Mia R.; Mundra, Sunil; Olsson, Pål Axel (August 2018). "Structure and function of the global topsoil microbiome". Nature. 560 (7717): 233–237. Bibcode:2018Natur.560..233B. doi:10.1038/s41586-018-0386-6. hdl:1887/73861. ISSN 1476-4687. PMID 30069051. S2CID 256768771.
  96. ^ Bickel, Samuel; Or, Dani (8 January 2020). "Soil bacterial diversity mediated by microscale aqueous-phase processes across biomes". Nature Communications. 11 (1): 116. Bibcode:2020NatCo..11..116B. doi:10.1038/s41467-019-13966-w. ISSN 2041-1723. PMC 6949233. PMID 31913270.
  97. ^ Cazzolla Gatti, R (2016). "The fractal nature of the latitudinal biodiversity gradient". Biologia. 71 (6): 669–672. Bibcode:2016Biolg..71..669C. doi:10.1515/biolog-2016-0077. S2CID 199471847.
  98. ^ Cogitore, Clément (1983–....). (January 1988), Hypothesis, ISBN 9780309037396, OCLC 968249007{{citation}}: CS1 maint: numeric names: authors list (link)
  99. ^ Biodiversity A–Z. "Biodiversity Hotspots".
  100. ^ Myers N (1988). "Threatened biotas: 'hot spots' in tropical forests". Environmentalist. 8 (3): 187–208. doi:10.1007/BF02240252. PMID 12322582. S2CID 2370659.
  101. ^ Myers N (1990). (PDF). Environmentalist. 10 (4): 243–256. Bibcode:1990ThEnv..10..243M. CiteSeerX 10.1.1.468.8666. doi:10.1007/BF02239720. PMID 12322583. S2CID 22995882. Archived from the original (PDF) on 9 September 2022. Retrieved 1 November 2017.
  102. ^ Tittensor D.; et al. (2011). (PDF). Nature. 466 (7310): 1098–1101. Bibcode:2010Natur.466.1098T. doi:10.1038/nature09329. PMID 20668450. S2CID 4424240. Archived from the original (PDF) on 31 August 2021. Retrieved 25 December 2012.
  103. ^ McKee, Jeffrey K. (December 2004). Sparing Nature: The Conflict Between Human Population Growth and Earth's Biodiversity. Rutgers University Press. p. 108. ISBN 978-0-8135-3558-6. Retrieved 28 June 2011.
  104. ^ Galindo-Leal, Carlos (2003). The Atlantic Forest of South America: Biodiversity Status, Threats, and Outlook. Washington: Island Press. p. 35. ISBN 978-1-55963-988-0.
  105. ^ Myers, Norman; Mittermeier, Russell A.; Mittermeier, Cristina G.; da Fonseca, Gustavo A. B.; Kent, Jennifer (February 2000). "Biodiversity hotspots for conservation priorities". Nature. 403 (6772): 853–858. Bibcode:2000Natur.403..853M. doi:10.1038/35002501. eISSN 1476-4687. ISSN 0028-0836. PMID 10706275. S2CID 4414279. Retrieved 9 August 2022.
  106. ^ . Alexander von Humboldt Institute for Research on Biological Resources. Archived from the original on 29 October 2013. Retrieved 30 December 2013.
  107. ^ godfrey, laurie. "isolation and biodiversity". pbs.org. Retrieved 22 October 2017.
  108. ^ a b Harrison, Susan P. (15 May 2013), "Plant Endemism in California", Plant and Animal Endemism in California, University of California Press, pp. 43–76, doi:10.1525/california/9780520275546.003.0004, ISBN 978-0-520-27554-6
  109. ^ "Madagascar – A World Apart: Eden Evolution". www.pbs.org. Retrieved 6 June 2019.
  110. ^ Normile, Dennis (10 September 2010). "Saving Forests to Save Biodiversity". Science. 329 (5997): 1278–1280. Bibcode:2010Sci...329.1278N. doi:10.1126/science.329.5997.1278. PMID 20829464.
  111. ^ White, Gilbert (1887). "letter xx". The Natural History of Selborne: With A Naturalist's Calendar & Additional Observations. Scott.
  112. ^ Algeo, T. J.; Scheckler, S. E. (29 January 1998). "Terrestrial-marine teleconnections in the Devonian: links between the evolution of land plants, weathering processes, and marine anoxic events". Philosophical Transactions of the Royal Society B: Biological Sciences. 353 (1365): 113–130. doi:10.1098/rstb.1998.0195. PMC 1692181.
  113. ^ Rosing, M.; Bird, D.; Sleep, N.; Bjerrum, C. (2010). "No climate paradox under the faint early Sun". Nature. 464 (7289): 744–747. Bibcode:2010Natur.464..744R. doi:10.1038/nature08955. PMID 20360739. S2CID 205220182.
  114. ^ a b Alroy, J; Marshall, CR; Bambach, RK; Bezusko, K; Foote, M; Fursich, FT; Hansen, TA; Holland, SM; et al. (2001). "Effects of sampling standardization on estimates of Phanerozoic marine diversification". Proceedings of the National Academy of Sciences of the United States of America. 98 (11): 6261–6266. Bibcode:2001PNAS...98.6261A. doi:10.1073/pnas.111144698. PMC 33456. PMID 11353852.
  115. ^ Sahney, S.; Benton, M.J. & Falcon-Lang, H.J. (2010). "Rainforest collapse triggered Pennsylvanian tetrapod diversification in Euramerica". Geology. 38 (12): 1079–1082. Bibcode:2010Geo....38.1079S. doi:10.1130/G31182.1.
  116. ^ Sahney, S. & Benton, M.J. (2008). "Recovery from the most profound mass extinction of all time". Proceedings of the Royal Society B: Biological Sciences. 275 (1636): 759–765. doi:10.1098/rspb.2007.1370. PMC 2596898. PMID 18198148.
  117. ^ Schopf, J. William; Kudryavtsev, Anatoliy B.; Czaja, Andrew D.; Tripathi, Abhishek B. (5 October 2007). "Evidence of Archean life: Stromatolites and microfossils". Precambrian Research. Earliest Evidence of Life on Earth. 158 (3–4): 141–155. Bibcode:2007PreR..158..141S. doi:10.1016/j.precamres.2007.04.009.
  118. ^ a b . Unep.org. Archived from the original on 14 February 2007. Retrieved 21 June 2009.
  119. ^ Okasha, S. (2010). "Does diversity always grow?". Nature. 466 (7304): 318. Bibcode:2010Natur.466..318O. doi:10.1038/466318a.
  120. ^ "Stanford researchers discover that animal functional diversity started poor, became richer over time". biox.stanford.edu. 11 March 2015.
  121. ^ a b Hautmann, Michael; Bagherpour, Borhan; Brosse, Morgane; Frisk, Åsa; Hofmann, Richard; Baud, Aymon; Nützel, Alexander; Goudemand, Nicolas; Bucher, Hugo; Brayard, Arnaud (2015). "Competition in slow motion: the unusual case of benthic marine communities in the wake of the end-Permian mass extinction". Palaeontology. 58 (5): 871–901. Bibcode:2015Palgy..58..871H. doi:10.1111/pala.12186. S2CID 140688908.
  122. ^ a b c Markov, AV; Korotaev, AV (2008). "Hyperbolic growth of marine and continental biodiversity through the phanerozoic and community evolution". Journal of General Biology. 69 (3): 175–194. PMID 18677962.
  123. ^ a b Markov, A; Korotayev, A (2007). "Phanerozoic marine biodiversity follows a hyperbolic trend". Palaeoworld. 16 (4): 311–318. doi:10.1016/j.palwor.2007.01.002.
  124. ^ National Survey Reveals Biodiversity Crisis 7 June 2007 at the Wayback Machine American Museum of Natural History
  125. ^ a b Wilson, Edward O. (1 January 2002). The Future of Life. Alfred A. Knopf. ISBN 978-0-679-45078-8.
  126. ^ Costanza, R.; d'Arge, R.; de Groot, R.; Farberk, S.; Grasso, M.; Hannon, B.; Limburg, Karin; Naeem, Shahid; et al. (1997). (PDF). Nature. 387 (6630): 253–260. Bibcode:1997Natur.387..253C. doi:10.1038/387253a0. S2CID 672256. Archived from the original (PDF) on 26 December 2009.
  127. ^ a b c d e f g h i j k l m n o p q r s t u Cardinale, Bradley; et al. (2012). "Biodiversity loss and its impact on humanity" (PDF). Nature. 486 (7401): 59–67. Bibcode:2012Natur.486...59C. doi:10.1038/nature11148. PMID 22678280. S2CID 4333166.
  128. ^ Wright, Richard T., and Bernard J. Nebel. Environmental Science : toward a Sustainable Future. Eighth ed., Upper Saddle River, N.J., Pearson Education, 2002.
  129. ^ Daniel, T. C.; et al. (21 May 2012). "Contributions of cultural services to the ecosystem services agenda". Proceedings of the National Academy of Sciences. 109 (23): 8812–8819. Bibcode:2012PNAS..109.8812D. doi:10.1073/pnas.1114773109. PMC 3384142. PMID 22615401.
  130. ^ Kiaer, Lars P.; Skovgaard, M.; Østergård, Hanne (1 December 2009). "Grain yield increase in cereal variety mixtures: A meta-analysis of field trials". Field Crops Research. 114 (3): 361–373. doi:10.1016/j.fcr.2009.09.006.
  131. ^ a b Letourneau, Deborah K. (1 January 2011). "Does plant diversity benefit agroecosystems? A synthetic review". Ecological Applications. 21 (1): 9–21. Bibcode:2011EcoAp..21....9L. doi:10.1890/09-2026.1. PMID 21516884. S2CID 11439673.
  132. ^ Piotto, Daniel (1 March 2008). "A meta-analysis comparing tree growth in monocultures and mixed plantations". Forest Ecology and Management. 255 (3–4): 781–786. doi:10.1016/j.foreco.2007.09.065.
  133. ^ Futuyma, Douglas J.; Shaffer, H. Bradley; Simberloff, Daniel, eds. (1 January 2009). Annual Review of Ecology, Evolution and Systematics: Vol 40 2009. Palo Alto, Calif.: Annual Reviews. pp. 573–592. ISBN 978-0-8243-1440-8.
  134. ^ Philpott, Stacy M.; Soong, Oliver; Lowenstein, Jacob H.; Pulido, Astrid Luz; Lopez, Diego Tobar (1 October 2009). Flynn, Dan F. B.; DeClerck, Fabrice. "Functional richness and ecosystem services: bird predation on arthropods in tropical agroecosystems". Ecological Applications. 19 (7): 1858–1867. Bibcode:2009EcoAp..19.1858P. doi:10.1890/08-1928.1. PMID 19831075. S2CID 9867979.
  135. ^ Van Bael, Sunshine A; et al. (April 2008). "Birds as predators in tropical agroforestry systems". Ecology. 89 (4): 928–934. Bibcode:2008Ecol...89..928V. doi:10.1890/06-1976.1. hdl:1903/7873. PMID 18481517.
  136. ^ Vance-Chalcraft, Heather D.; et al. (1 November 2007). "The Influence of Intraguild Predation on Prey Suppression and Prey Release: A Meta-analysis". Ecology. 88 (11): 2689–2696. Bibcode:2007Ecol...88.2689V. doi:10.1890/06-1869.1. PMID 18051635. S2CID 21458500.
  137. ^ a b c d e Quijas, Sandra; Schmid, Bernhard; Balvanera, Patricia (1 November 2010). "Plant diversity enhances provision of ecosystem services: A new synthesis". Basic and Applied Ecology. 11 (7): 582–593. Bibcode:2010BApEc..11..582Q. CiteSeerX 10.1.1.473.7444. doi:10.1016/j.baae.2010.06.009.
  138. ^ Levine, Jonathan M.; Adler, Peter B.; Yelenik, Stephanie G. (6 September 2004). "A meta-analysis of biotic resistance to exotic plant invasions". Ecology Letters. 7 (10): 975–989. Bibcode:2004EcolL...7..975L. doi:10.1111/j.1461-0248.2004.00657.x. S2CID 85852363.
  139. ^ Crowder, David W.; et al. (2010). "Organic agriculture promotes evenness and natural pest control". Nature. 466 (7302): 109–112. Bibcode:2010Natur.466..109C. doi:10.1038/nature09183. PMID 20596021. S2CID 205221308.
  140. ^ Andow, D A (1 January 1991). "Vegetational Diversity and Arthropod Population Response". Annual Review of Entomology. 36 (1): 561–586. doi:10.1146/annurev.en.36.010191.003021.
  141. ^ Keesing, Felicia; et al. (December 2010). "Impacts of biodiversity on the emergence and transmission of infectious diseases". Nature. 468 (7324): 647–652. Bibcode:2010Natur.468..647K. doi:10.1038/nature09575. PMC 7094913. PMID 21124449.
  142. ^ Johnson, Pieter T. J.; et al. (13 February 2013). "Biodiversity decreases disease through predictable changes in host community competence". Nature. 494 (7436): 230–233. Bibcode:2013Natur.494..230J. doi:10.1038/nature11883. PMID 23407539. S2CID 205232648.
  143. ^ Garibaldi, L. A.; et al. (28 February 2013). "Wild Pollinators Enhance Fruit Set of Crops Regardless of Honey Bee Abundance". Science. 339 (6127): 1608–1611. Bibcode:2013Sci...339.1608G. doi:10.1126/science.1230200. hdl:11336/6844. PMID 23449997. S2CID 88564525.
  144. ^ Costanza, Robert; et al. (1997). "The value of the world's ecosystem services and natural capital". Nature. 387 (6630): 253–260. Bibcode:1997Natur.387..253C. doi:10.1038/387253a0. S2CID 672256.
  145. ^ a b Hassan, Rashid M.; et al. (2006). Ecosystems and human well-being: current state and trends : findings of the Condition and Trends Working Group of the Millennium Ecosystem Assessment. Island Press. p. 105. ISBN 978-1-55963-228-7.
  146. ^ a b Vandermeer, John H. (2011). The Ecology of Agroecosystems. Jones & Bartlett Learning. ISBN 978-0-7637-7153-9.
  147. ^ IPBES (26 June 2018). "Assessment Report on Pollinators, Pollination and Food Production". ipbes.org. IPBES. Retrieved 13 April 2021.
  148. ^ Bommarco (2013). "Ecological intensification: harnessing ecosystem services for food security". Trends in Ecology and Evolution. 28 (4): 230–238. doi:10.1016/j.tree.2012.10.012. PMID 23153724.
  149. ^ a b c . Lumrix.net. Archived from the original on 23 July 2011. Retrieved 21 June 2009.
  150. ^ Wahl, GM; Robert de Saint Vincent B; Derose, ML (1984). "Effect of chromosomal position on amplification of transfected genes in animal cells". Nature. 307 (5951): 516–520. Bibcode:1984Natur.307..516W. doi:10.1038/307516a0. PMID 6694743. S2CID 4322191.
  151. ^ . Archived from the original on 14 August 2011. Retrieved 13 November 2007.
  152. ^ Aswathanarayana, Uppugunduri (2012). Natural Resources – Technology, Economics & Policy. Leiden, Netherlands: CRC Press. p. 370. ISBN 978-0-203-12399-7.
  153. ^ Aswathanarayana, Uppugunduri (2012). Natural Resources – Technology, Economics & Policy. Leiden. Netherlands: CRC Press. p. 370. ISBN 978-0-203-12399-7.
  154. ^ World Health Organization(WHO) and Secretariat of the Convention on Biological Diversity (2015) . See also Website of the Secretariat of the Convention on Biological Diversity on biodiversity and health. Other relevant resources include Reports of the 1st and 2nd International Conferences on Health and Biodiversity. 7 January 2009 at the Wayback Machine See also: Website of the UN COHAB Initiative 4 February 2009 at the Wayback Machine
  155. ^ a b Chivian, Eric, ed. (15 May 2008). Sustaining Life: How Human Health Depends on Biodiversity. OUP US. ISBN 978-0-19-517509-7.
  156. ^ Corvalán, Carlos; Hales, Simon; Anthony J. McMichael (2005). Ecosystems and Human Well-being: Health Synthesis. World Health Organization. p. 28. ISBN 978-92-4-156309-3.
  157. ^ (2009) "Climate Change and Biological Diversity" Convention on Biological Diversity Retrieved 5 November 2009
  158. ^ Ramanujan, Krishna (2 December 2010). "Study: Loss of species is bad for your health". Cornell Chronicle. Retrieved 20 July 2011.
  159. ^ The World Bank (30 June 2010). Water and Development: An Evaluation of World Bank Support, 1997–2007. World Bank Publications. p. 79. ISBN 978-0-8213-8394-0.
  160. ^ "Drinking-water". World Health Organization.
  161. ^ Gaston, Kevin J.; Warren, Philip H.; Devine-Wright, Patrick; Irvine, Katherine N.; Fuller, Richard A. (2007). "Psychological benefits of greenspace increase with biodiversity". Biology Letters. 3 (4): 390–394. doi:10.1098/rsbl.2007.0149. PMC 2390667. PMID 17504734.
  162. ^ . Cohabnet.org. Archived from the original on 5 September 2008. Retrieved 21 June 2009.
  163. ^ "World Wildlife Fund (WWF): "Arguments for Protection" website". Wwf.panda.org. Retrieved 24 September 2011.
  164. ^ "Science points to causes of COVID-19". United Nations Environmental Programm. United Nations. 22 May 2020. Retrieved 24 June 2020.
  165. ^ Keesing, Felicia; Belden, Lisa K.; Daszak, Peter; Dobson, Andrew; Harvell, C. Drew; Holt, Robert D.; Hudson, Peter; Jolles, Anna; Jones, Kate E.; Mitchell, Charles E.; Myers, Samuel S.; Bogich, Tiffany; Ostfeld, Richard S. (1 December 2010). "Impacts of biodiversity on the emergence and transmission of infectious diseases". Nature. 468 (7324): 647–652. Bibcode:2010Natur.468..647K. doi:10.1038/nature09575. ISSN 1476-4687. PMC 7094913. PMID 21124449.
  166. ^ Mendelsohn, Robert; Balick, Michael J. (1 April 1995). "The value of undiscovered pharmaceuticals in tropical forests". Economic Botany. 49 (2): 223–228. doi:10.1007/BF02862929. S2CID 39978586.
  167. ^ (2006) "Molecular Pharming" GMO Compass Retrieved 5 November 2009, GMOcompass.org 8 February 2008 at the Wayback Machine
  168. ^ Mendelsohn, Robert; Balick, Michael J. (1 July 1997). "Notes on economic plants". Economic Botany. 51 (3): 328. doi:10.1007/BF02862103. S2CID 5430635.
  169. ^ Harvey, Alan L. (1 October 2008). "Natural products in drug discovery". Drug Discovery Today. 13 (19–20): 894–901. doi:10.1016/j.drudis.2008.07.004. PMID 18691670.
  170. ^ Hawkins E.S., Reich; Reich, MR (1992). "Japanese-originated pharmaceutical products in the United States from 1960 to 1989: an assessment of innovation". Clin Pharmacol Ther. 51 (1): 1–11. doi:10.1038/clpt.1992.1. PMID 1732073. S2CID 46010944.
  171. ^ Roopesh, J.; et al. (10 February 2008). (PDF). Current Science. 94 (3): 292. Archived from the original (PDF) on 11 October 2011.
  172. ^ Dhillion, SS; Svarstad, H; Amundsen, C; Bugge, HC (2002). "Bioprospecting: Effects on environment and development". Ambio. 31 (6): 491–493. doi:10.1639/0044-7447(2002)031[0491:beoead]2.0.co;2. JSTOR 4315292. PMID 12436849.
  173. ^ Cole, A. (16 July 2005). "Looking for new compounds in sea is endangering ecosystem". BMJ. 330 (7504): 1350. doi:10.1136/bmj.330.7504.1350-d. PMC 558324. PMID 15947392.
  174. ^ . Cohabnet.org. Archived from the original on 25 October 2017. Retrieved 21 June 2009.
  175. ^ IUCN, WRI, World Business Council for Sustainable Development, Earthwatch Inst. 2007 Business and Ecosystems: Ecosystem Challenges and Business Implications
  176. ^ Millennium Ecosystem Assessment 2005 Ecosystems and Human Well-being: Opportunities and Challenges for Business and Industry
  177. ^ "Business and Biodiversity webpage of the U.N. Convention on Biological Diversity". Cbd.int. Retrieved 21 June 2009.
  178. ^ WRI Corporate Ecosystem Services Review. See also: Examples of Ecosystem-Service Based Risks, Opportunities and Strategies 1 April 2009 at the Wayback Machine
  179. ^ Corporate Biodiversity Accounting. See also: Making the Natural Capital Declaration Accountable.
  180. ^ Tribot, A.; Mouquet, N.; Villeger, S.; Raymond, M.; Hoff, F.; Boissery, P.; Holon, F.; Deter, J. (2016). "Taxonomic and functional diversity increase the aesthetic value of coralligenous reefs" (PDF). Scientific Reports. 6: 34229. Bibcode:2016NatSR...634229T. doi:10.1038/srep34229. PMC 5039688. PMID 27677850.
  181. ^ Broad, William (19 November 1996). "Paradise Lost: Biosphere Retooled as Atmospheric Nightmare". The New York Times. Retrieved 10 April 2013.
  182. ^ Ponti, Crystal (3 March 2017). "Rise of the Robot Bees: Tiny Drones Turned into Artificial Pollinators". NPR. Retrieved 18 January 2018.
  183. ^ LOSEY, JOHN E.; VAUGHAN, MACE (1 January 2006). "The Economic Value of Ecological Services Provided by Insects". BioScience. 56 (4): 311. doi:10.1641/0006-3568(2006)56[311:TEVOES]2.0.CO;2.
  184. ^ "Species Evenness - an overview | ScienceDirect Topics". www.sciencedirect.com. Retrieved 25 February 2023.
  185. ^ Chakraborty, Jaya; Palit, Krishna; Das, Surajit (2022), "Metagenomic approaches to study the culture-independent bacterial diversity of a polluted environment—a case study on north-eastern coast of Bay of Bengal, India", Microbial Biodegradation and Bioremediation, Elsevier, pp. 81–107, doi:10.1016/B978-0-323-85455-9.00014-X, ISBN 9780323854559, S2CID 244883885, retrieved 25 February 2023
  186. ^ Hamilton, Andrew J. (1 April 2005). "Species diversity or biodiversity?". Journal of Environmental Management. 75 (1): 89–92. doi:10.1016/j.jenvman.2004.11.012. ISSN 0301-4797. PMID 15748806.
  187. ^ Ortiz-Burgos, Selene (2016), "Shannon-Weaver Diversity Index", in Kennish, Michael J. (ed.), Encyclopedia of Estuaries, Encyclopedia of Earth Sciences Series, Dordrecht: Springer Netherlands, pp. 572–573, doi:10.1007/978-94-017-8801-4_233, ISBN 978-94-017-8801-4, retrieved 25 February 2023
  188. ^ Allaby, Michael (2010), "Simpson's diversity index", A Dictionary of Ecology, Oxford University Press, doi:10.1093/acref/9780199567669.001.0001, ISBN 978-0-19-956766-9, retrieved 25 February 2023
  189. ^ Morris, E. Kathryn; Caruso, Tancredi; Buscot, François; Fischer, Markus; Hancock, Christine; Maier, Tanja S.; Meiners, Torsten; Müller, Caroline; Obermaier, Elisabeth; Prati, Daniel; Socher, Stephanie A.; Sonnemann, Ilja; Wäschke, Nicole; Wubet, Tesfaye; Wurst, Susanne (September 2014). "Choosing and using diversity indices: insights for ecological applications from the German Biodiversity Exploratories". Ecology and Evolution. 4 (18): 3514–3524. Bibcode:2014EcoEv...4.3514M. doi:10.1002/ece3.1155. ISSN 2045-7758. PMC 4224527. PMID 25478144.
  190. ^ Wilson Edward O (2000). "On the Future of Conservation Biology". Conservation Biology. 14 (1): 1–3. Bibcode:2000ConBi..14....1W. doi:10.1046/j.1523-1739.2000.00000-e1.x. S2CID 83906221.
  191. ^ Nee S (2004). "More than meets the eye". Nature. 429 (6994): 804–805. Bibcode:2004Natur.429..804N. doi:10.1038/429804a. PMID 15215837. S2CID 1699973.
  192. ^ Stork, Nigel E. (2007). "Biodiversity: World of insects". Nature. 448 (7154): 657–658. Bibcode:2007Natur.448..657S. doi:10.1038/448657a. PMID 17687315. S2CID 9378467.
  193. ^ Thomas J. A.; Telfer M. G.; Roy D. B.; Preston C. D.; Greenwood J. J. D.; Asher J.; Fox R.; Clarke R. T.; Lawton J. H. (2004). "Comparative Losses of British Butterflies, Birds, and Plants and the Global Extinction Crisis". Science. 303 (5665): 1879–1881. Bibcode:2004Sci...303.1879T. doi:10.1126/science.1095046. PMID 15031508. S2CID 22863854.
  194. ^ Dunn, Robert R. (2005). "Modern Insect Extinctions, the Neglected Majority". Conservation Biology. 19 (4): 1030–1036. Bibcode:2005ConBi..19.1030D. doi:10.1111/j.1523-1739.2005.00078.x. S2CID 38218672.
  195. ^ Torchin, Mark E.; Lafferty, Kevin D.; Dobson, Andrew P.; McKenzie, Valerie J.; Kuris, Armand M. (6 February 2003). "Introduced species and their missing parasites". Nature. 421 (6923): 628–630. Bibcode:2003Natur.421..628T. doi:10.1038/nature01346. PMID 12571595. S2CID 4384385.
  196. ^ Levine, Jonathan M.; D'Antonio, Carla M. (1 October 1999). "Elton Revisited: A Review of Evidence Linking Diversity and Invasibility". Oikos. 87 (1): 15. Bibcode:1999Oikos..87...15L. doi:10.2307/3546992. JSTOR 3546992. S2CID 13987518.
  197. ^ Levine, J. M. (5 May 2000). "Species Diversity and Biological Invasions: Relating Local Process to Community Pattern". Science. 288 (5467): 852–854. Bibcode:2000Sci...288..852L. doi:10.1126/science.288.5467.852. PMID 10797006. S2CID 7363143.
  198. ^ GUREVITCH, J; PADILLA, D (1 September 2004). "Are invasive species a major cause of extinctions?". Trends in Ecology & Evolution. 19 (9): 470–474. doi:10.1016/j.tree.2004.07.005. PMID 16701309.
  199. ^ Sax, Dov F.; Gaines, Steven D.; Brown, James H. (1 December 2002). "Species Invasions Exceed Extinctions on Islands Worldwide: A Comparative Study of Plants and Birds". The American Naturalist. 160 (6): 766–783. doi:10.1086/343877. PMID 18707464. S2CID 8628360.
  200. ^ Jude, David (1995). Munawar, M. (ed.). The lake Huron ecosystem: ecology, fisheries and management. Amsterdam: S.P.B. Academic Publishing. ISBN 978-90-5103-117-1.
  201. ^ "Are invasive plants a threat to native biodiversity? It depends on the spatial scale". ScienceDaily. 11 April 2011.
  202. ^ Higgins, Steven I.; Richardson, David M. (1998). "Pine invasions in the southern hemisphere: Modelling interactions between organism, environment and disturbance". Plant Ecology. 135 (1): 79–93. doi:10.1023/a:1009760512895. S2CID 9188012.
  203. ^ Mooney, H. A.; Cleland, EE (2001). "The evolutionary impact of invasive species". Proceedings of the National Academy of Sciences. 98 (10): 5446–5451. Bibcode:2001PNAS...98.5446M. doi:10.1073/pnas.091093398. PMC 33232. PMID 11344292.
  204. ^ . Nativeseednetwork.org. Archived from the original on 22 February 2006. Retrieved 21 June 2009.
  205. ^ Rhymer, Judith M.; Simberloff, Daniel (1996). "Extinction by Hybridization and Introgression". Annual Review of Ecology and Systematics. 27: 83–109. doi:10.1146/annurev.ecolsys.27.1.83. JSTOR 2097230.
  206. ^ Potts, Bradley M.; Barbour, Robert C.; Hingston, Andrew B. (2001). Genetic Pollution from Farm Forestry Using Eucalypt Species and Hydrids: A Report for the RIRDC/L & WA/FWPRDC Joint Venture Agroforestry Program. RIRDC. ISBN 978-0-642-58336-9. {{cite book}}: |journal= ignored (help) RIRDC.gov.au RIRDC Publication No 01/114; RIRDC Project No CPF – 3A 5 January 2016 at the Wayback Machine; Australian Government, Rural Industrial Research and Development Corporation
  207. ^ a b "Genetic Pollution: The Great Genetic Scandal"; 18 May 2009 at the Wayback Machine
  208. ^ Pollan, Michael (9 December 2001). "The year in ideas: A TO Z.; Genetic Pollution". The New York Times. from the original on 23 February 2022.
  209. ^ Ellstrand, Norman C. (2003). Dangerous Liaisons? When Cultivated Plants Mate with Their Wild Relatives. Vol. 22. The Johns Hopkins University Press. pp. 29–30. doi:10.1038/nbt0104-29. ISBN 978-0-8018-7405-5. S2CID 41155573. {{cite book}}: |journal= ignored (help) Reviewed in Strauss, Steven H; DiFazio, Stephen P (2004). "Hybrids abounding". Nature Biotechnology. 22 (1): 29–30. doi:10.1038/nbt0104-29. S2CID 41155573.
  210. ^ Zaid, A. (1999). "Genetic pollution: Uncontrolled spread of genetic information". Glossary of Biotechnology and Genetic Engineering. Food and Agriculture Organization of the United Nations. ISBN 978-92-5-104369-1. Retrieved 21 June 2009.
  211. ^ . Searchable Biotechnology Dictionary. University of Minnesota. Archived from the original on 10 February 2008.
  212. ^ "The many facets of pollution". Bologna University. Retrieved 18 May 2012.
  213. ^ Millennium Ecosystem Assessment (2005). World Resources Institute, Washington, DC. Ecosystems and Human Well-being: Biodiversity Synthesis
  214. ^ a b c Soulé, Michael E. (1986). "What is conservation biology?". BioScience. 35 (11): 727–734. CiteSeerX 10.1.1.646.7332. doi:10.2307/1310054. JSTOR 1310054.
  215. ^ Davis, Peter (1996). Museums and the natural environment: the role of natural history museums in biological conservation. Leicester University Press. ISBN 978-0-7185-1548-5.
  216. ^ a b Dyke, Fred Van (29 February 2008). Conservation Biology: Foundations, Concepts, Applications. Springer Science & Business Media. ISBN 978-1-4020-6890-4.
  217. ^ Hunter, Malcolm L. (1996). Fundamentals of Conservation Biology. Blackwell Science. ISBN 978-0-86542-371-8.
  218. ^ Bowen, B. W. (1999). "Preserving genes, species, or ecosystems? Healing the fractured foundations of conservation policy". Molecular Ecology. 8 (12 Suppl 1): S5–S10. Bibcode:1999MolEc...8.....B. doi:10.1046/j.1365-294x.1999.00798.x. PMID 10703547. S2CID 33096004.
  219. ^ Soulé, Michael E. (1 January 1986). Conservation Biology: The Science of Scarcity and Diversity. Sinauer Associates. ISBN 978-0-87893-794-3.
  220. ^ Margules C. R.; Pressey R. L. (2000). (PDF). Nature. 405 (6783): 243–253. doi:10.1038/35012251. PMID 10821285. S2CID 4427223. Archived from the original (PDF) on 5 February 2009.
  221. ^ a b Knozowski, Paweł; Nowakowski, Jacek J.; Stawicka, Anna Maria; Górski, Andrzej; Dulisz, Beata (10 November 2023). "Effect of nature protection and management of grassland on biodiversity – Case from big flooded river valley (NE Poland)". Science of the Total Environment. 898: 165280. Bibcode:2023ScTEn.898p5280K. doi:10.1016/j.scitotenv.2023.165280. ISSN 0048-9697. PMID 37419354.
  222. ^ Example: Gascon, C., Collins, J. P., Moore, R. D., Church, D. R., McKay, J. E. and Mendelson, J. R. III (eds) (2007). Amphibian Conservation Action Plan. IUCN/SSC Amphibian Specialist Group. Gland, Switzerland and Cambridge, UK. 64pp. Amphibians.org 4 July 2007 at the Wayback Machine, see also Millenniumassessment.org, Europa.eu 12 February 2009 at the Wayback Machine
  223. ^ Luck, Gary W.; Daily, Gretchen C.; Ehrlich, Paul R. (2003). (PDF). Trends in Ecology & Evolution. 18 (7): 331–336. CiteSeerX 10.1.1.595.2377. doi:10.1016/S0169-5347(03)00100-9. Archived from the original (PDF) on 19 February 2006.
  224. ^ . www.millenniumassessment.org. Archived from the original on 13 August 2015.
  225. ^ (PDF) (in Dutch). Ministry of Economic Affairs (Netherlands). 25 March 2014. Archived from the original (PDF) on 14 July 2014. Retrieved 9 June 2014.
  226. ^ . Barcoding.si.edu. 26 May 2010. Archived from the original on 22 November 2022. Retrieved 24 September 2011.
  227. ^ "Earth Times: show/303405,camel-cull-would-help-curb-global-warming.ht…". 1 August 2012. Archived from the original on 1 August 2012.
  228. ^ "Belgium creating 45 "seed gardens"; gene banks with intent to reintroduction". Hbvl.be. 8 September 2011. Retrieved 24 September 2011.
  229. ^ Kaiser, J. (21 September 2001). "Bold Corridor Project Confronts Political Reality". Science. 293 (5538): 2196–2199. doi:10.1126/science.293.5538.2196. PMID 11567122. S2CID 153587982.
  230. ^ Conservationists Use Triage to Determine which Species to Save and Not; Like battlefield medics, conservationists are being forced to explicitly apply triage to determine which creatures to save and which to let go 23 July 2012 Scientific American.
  231. ^ Jones-Walters, L.; Mulder, I. (2009). "Valuing nature: The economics of biodiversity" (PDF). Journal for Nature Conservation. 17 (4): 245–247. Bibcode:2009JNatC..17..245J. doi:10.1016/j.jnc.2009.06.001.
  232. ^ Mulongoy, Kalemani Jo; Chape, Stuart (2004). (PDF). Montreal, Canada and Cambridge, UK: CBD Secretariat and UNEP-WCMC. pp. 15 and 25. Archived from the original (PDF) on 22 September 2017. Retrieved 23 October 2017.
  233. ^ Baillie, Jonathan; Ya-Ping, Zhang (14 September 2018). "Space for nature". Science. 361 (6407): 1051. Bibcode:2018Sci...361.1051B. doi:10.1126/science.aau1397. PMID 30213888.
  234. ^ Allan, James R.; Possingham, Hugh P.; Atkinson, Scott C.; Waldron, Anthony; Di Marco, Moreno; Butchart, Stuart H. M.; Adams, Vanessa M.; Kissling, W. Daniel; Worsdell, Thomas; Sandbrook, Chris; Gibbon, Gwili (3 June 2022). "The minimum land area requiring conservation attention to safeguard biodiversity". Science. 376 (6597): 1094–1101. Bibcode:2022Sci...376.1094A. doi:10.1126/science.abl9127. hdl:11573/1640006. ISSN 0036-8075. PMID 35653463. S2CID 233423065.
  235. ^ a b Paddison, Laura (19 December 2022). "More than 190 countries sign landmark agreement to halt the biodiversity crisis". CNN. Retrieved 20 December 2022.
  236. ^ Lambert, Jonathan (4 September 2020). "Protecting half the planet could help solve climate change and save species". Science News. Retrieved 5 September 2020.
  237. ^ "Protected areas". International Union for Conservation of Nature (IUCN). 20 August 2015.
  238. ^ . Archived from the original on 30 November 2020. Retrieved 8 December 2020.
biodiversity, fauna, flora, redirects, here, organization, fauna, flora, international, biological, diversity, variety, variability, life, earth, measure, variation, genetic, genetic, variability, species, species, diversity, ecosystem, ecosystem, diversity, l. Fauna and flora redirects here For the organization see Fauna and Flora International Biodiversity or biological diversity is the variety and variability of life on Earth Biodiversity is a measure of variation at the genetic genetic variability species species diversity and ecosystem ecosystem diversity level 1 Biodiversity is not distributed evenly on Earth it is usually greater in the tropics as a result of the warm climate and high primary productivity in the region near the equator Tropical forest ecosystems cover less than 10 of earth s surface and contain about 90 of the world s species Marine biodiversity is usually higher along coasts in the Western Pacific where sea surface temperature is highest and in the mid latitudinal band in all oceans There are latitudinal gradients in species diversity Biodiversity generally tends to cluster in hotspots and has been increasing through time but will be likely to slow in the future as a primary result of deforestation It encompasses the evolutionary ecological and cultural processes that sustain life 2 An example of the biodiversity of fungi in a forest in Northern Saskatchewan in this photo there are also leaf lichens and mosses More than 99 9 of all species that ever lived on Earth amounting to over five billion species are estimated to be extinct Estimates on the number of Earth s current species range from 10 million to 14 million of which about 1 2 million have been documented and over 86 have not yet been described The total amount of related DNA base pairs on Earth is estimated at 5 0 x 1037 and weighs 50 billion tonnes In comparison the total mass of the biosphere has been estimated to be as much as four trillion tons of carbon In July 2016 scientists reported identifying a set of 355 genes from the last universal common ancestor LUCA of all organisms living on Earth The age of Earth is about 4 54 billion years The earliest undisputed evidence of life dates at least from 3 7 billion years ago during the Eoarchean era after a geological crust started to solidify following the earlier molten Hadean eon There are microbial mat fossils found in 3 48 billion year old sandstone discovered in Western Australia Other early physical evidence of a biogenic substance is graphite in 3 7 billion year old meta sedimentary rocks discovered in Western Greenland More recently in 2015 remains of biotic life were found in 4 1 billion year old rocks in Western Australia According to one of the researchers If life arose relatively quickly on Earth then it could be common in the universe 3 Since life began on Earth five major mass extinctions and several minor events have led to large and sudden drops in biodiversity The Phanerozoic aeon the last 540 million years marked a rapid growth in biodiversity via the Cambrian explosion a period during which the majority of multicellular phyla first appeared The next 400 million years included repeated massive biodiversity losses classified as mass extinction events In the Carboniferous rainforest collapse led to a great loss of plant and animal life The Permian Triassic extinction event 251 million years ago was the worst vertebrate recovery took 30 million years The most recent the Cretaceous Paleogene extinction event occurred 65 million years ago and has often attracted more attention than others because it resulted in the extinction of the non avian dinosaurs The period since the emergence of humans has displayed an ongoing biodiversity loss and an accompanying loss of genetic diversity This process is often referred to as Holocene extinction or sixth mass extinction Biodiversity loss is also one of the most critical manifestations of the Anthropocene 4 a new proposed geological epoch which is thought to have started around the 1950s The reduction is caused primarily by human impacts particularly habitat destruction Contents 1 History of the term 2 Definitions 3 Number of species 4 Current biodiversity loss 5 Distribution 5 1 Latitudinal gradients 5 2 Biodiversity Hotspot 6 Evolution 6 1 History 6 2 Diversification 7 Role and benefits of biodiversity 7 1 General ecosystem services 7 1 1 Services enhanced 7 1 2 Services with mixed evidence 7 1 3 Services hindered 7 2 Agriculture 7 3 Human health 7 4 Business and industry 7 5 Leisure cultural and aesthetic value 7 6 Ecological services 8 Measuring biodiversity 8 1 Analytical limits 9 Biodiversity changes other than losses 9 1 Introduced and invasive species 9 2 Hybridization and genetic pollution 10 Conservation 10 1 Protection and restoration techniques 10 2 Priorities for resource allocation 11 Protected areas 11 1 National parks 11 2 Wildlife sanctuary 11 3 Forest reserves 11 3 1 Steps to conserve the forest cover 11 4 Zoological parks 11 5 Botanical gardens 12 Role of society 12 1 Transformative change 12 2 Citizen science 13 Legal status 13 1 International 13 1 1 European Union 13 2 National level laws 14 See also 15 References 16 External linksHistory of the term edit1916 The term biological diversity was used first by J Arthur Harris in The Variable Desert Scientific American The bare statement that the region contains a flora rich in genera and species and of diverse geographic origin or affinity is entirely inadequate as a description of its real biological diversity 5 1967 Raymond F Dasmann used the term biological diversity in reference to the richness of living nature that conservationists should protect in his book A Different Kind of Country 6 7 1974 The term natural diversity was introduced by John Terborgh 8 1980 Thomas Lovejoy introduced the term biological diversity to the scientific community in a book 9 It rapidly became commonly used 10 1985 According to Edward O Wilson the contracted form biodiversity was coined by W G Rosen The National Forum on BioDiversity was conceived by Walter G Rosen Dr Rosen represented the NRC NAS throughout the planning stages of the project Furthermore he introduced the term biodiversity 11 1985 The term biodiversity appears in the article A New Plan to Conserve the Earth s Biota by Laura Tangley 12 1988 The term biodiversity first appeared in publication 13 14 1988 to Present The United Nations Environment Programme UNEP Ad Hoc Working Group of Experts on Biological Diversity in began working in November 1988 leading to the publication of the draft Convention on Biological Diversity in May 1992 Since this time there have been 15 Conferences of the Parties COPs to discuss potential global political responses to biodiversity loss Most recently COP 15 in Montreal Canada in 2022 Definitions editBiologists most often define biodiversity as the totality of genes species and ecosystems of a region 15 16 An advantage of this definition is that it presents a unified view of the traditional types of biological variety previously identified taxonomic diversity usually measured at the species diversity level 17 ecological diversity often viewed from the perspective of ecosystem diversity 17 morphological diversity which stems from genetic diversity and molecular diversity 18 functional diversity which is a measure of the number of functionally disparate species within a population e g different feeding mechanism different motility predator vs prey etc 19 Biodiversity is most commonly used to replace the more clearly defined and long established terms species diversity and species richness 20 Other definitions include in chronological order An explicit definition consistent with this interpretation was first given in a paper by Bruce A Wilcox commissioned by the International Union for the Conservation of Nature and Natural Resources IUCN for the 1982 World National Parks Conference 21 Wilcox s definition was Biological diversity is the variety of life forms at all levels of biological systems i e molecular organismic population species and ecosystem 21 A publication by Wilcox in 1984 Biodiversity can be defined genetically as the diversity of alleles genes and organisms They study processes such as mutation and gene transfer that drive evolution 21 The 1992 United Nations Earth Summit defined biological diversity as the variability among living organisms from all sources including inter alia terrestrial marine and other aquatic ecosystems and the ecological complexes of which they are part this includes diversity within species between species and of ecosystems 22 This definition is used in the United Nations Convention on Biological Diversity 22 Gaston and Spicer s definition in their book Biodiversity an introduction in 2004 is variation of life at all levels of biological organization 23 The Food and Agriculture Organization of the United Nations FAO defined biodiversity in 2019 as the variability that exists among living organisms both within and between species and the ecosystems of which they are part 24 Number of species editMain article Global biodiversity nbsp Discovered and predicted total number of species on land and in the oceansAccording to Mora and colleagues estimation there are approximately 8 7 million terrestrial species and 2 2 million oceanic species The authors note that these estimates are strongest for eukaryotic organisms and likely represent the lower bound of prokaryote diversity 25 Other estimates include 220 000 vascular plants estimated using the species area relation method 26 0 7 1 million marine species 27 10 30 million insects 28 of some 0 9 million we know today 29 5 10 million bacteria 30 1 5 3 million fungi estimates based on data from the tropics long term non tropical sites and molecular studies that have revealed cryptic speciation 31 Some 0 075 million species of fungi had been documented by 2001 32 1 million mites 33 The number of microbial species is not reliably known but the Global Ocean Sampling Expedition dramatically increased the estimates of genetic diversity by identifying an enormous number of new genes from near surface plankton samples at various marine locations initially over the 2004 2006 period 34 The findings may eventually cause a significant change in the way science defines species and other taxonomic categories 35 36 Since the rate of extinction has increased many extant species may become extinct before they are described 37 Not surprisingly in the animalia the most studied groups are birds and mammals whereas fishes and arthropods are the least studied animals groups 38 Current biodiversity loss editMain article Biodiversity loss nbsp The World Wildlife Fund s Living Planet Report 2022 found that wildlife populations declined by an average 69 since 1970 39 40 41 During the last century decreases in biodiversity have been increasingly observed It was estimated in 2007 that up to 30 of all species will be extinct by 2050 42 Of these about one eighth of known plant species are threatened with extinction 43 Estimates reach as high as 140 000 species per year based on Species area theory 44 This figure indicates unsustainable ecological practices because few species emerge each year citation needed The rate of species loss is greater now than at any time in human history with extinctions occurring at rates hundreds of times higher than background extinction rates 43 45 46 and expected to still grow in the upcoming years 46 47 48 As of 2012 some studies suggest that 25 of all mammal species could be extinct in 20 years 49 In absolute terms the planet has lost 58 of its biodiversity since 1970 according to a 2016 study by the World Wildlife Fund 50 The Living Planet Report 2014 claims that the number of mammals birds reptiles amphibians and fish across the globe is on average about half the size it was 40 years ago Of that number 39 accounts for the terrestrial wildlife gone 39 for the marine wildlife gone and 76 for the freshwater wildlife gone Biodiversity took the biggest hit in Latin America plummeting 83 percent High income countries showed a 10 increase in biodiversity which was canceled out by a loss in low income countries This is despite the fact that high income countries use five times the ecological resources of low income countries which was explained as a result of a process whereby wealthy nations are outsourcing resource depletion to poorer nations which are suffering the greatest ecosystem losses 51 A 2017 study published in PLOS One found that the biomass of insect life in Germany had declined by three quarters in the last 25 years 52 Dave Goulson of Sussex University stated that their study suggested that humans appear to be making vast tracts of land inhospitable to most forms of life and are currently on course for ecological Armageddon If we lose the insects then everything is going to collapse 53 In 2020 the World Wildlife Foundation published a report saying that biodiversity is being destroyed at a rate unprecedented in human history The report claims that 68 of the population of the examined species were destroyed in the years 1970 2016 54 Of 70 000 monitored species around 48 are experiencing population declines from human activity in 2023 whereas only 3 have increasing populations 55 56 57 nbsp Summary of major biodiversity related environmental change categories expressed as a percentage of human driven change in red relative to baseline blue Rates of decline in biodiversity in the current sixth mass extinction match or exceed rates of loss in the five previous mass extinction events in the fossil record 67 Biodiversity loss is in fact one of the most critical manifestations of the Anthropocene since around the 1950s the continued decline of biodiversity constitutes an unprecedented threat to the continued existence of human civilization 4 Loss of biodiversity results in the loss of natural capital that supplies ecosystem goods and services Species today are being wiped out at a rate 100 to 1 000 times higher than baseline and the rate of extinctions is increasing This process destroys the resilience and adaptability of life on Earth 68 In 2006 many species were formally classified as rare or endangered or threatened moreover scientists have estimated that millions more species are at risk which have not been formally recognized About 40 percent of the 40 177 species assessed using the IUCN Red List criteria are now listed as threatened with extinction a total of 16 119 69 As of late 2022 9251 species were considered part of the IUCN s critically endangered 70 Numerous scientists and the IPBES Global Assessment Report on Biodiversity and Ecosystem Services assert that human population growth and overconsumption are the primary factors in this decline 71 72 73 74 75 However other scientists have criticized this finding and say that loss of habitat caused by the growth of commodities for export is the main driver 76 Some studies have however pointed out that habitat destruction for the expansion of agriculture and the overexploitation of wildlife are the more significant drivers of contemporary biodiversity loss not climate change 77 78 Distribution edit nbsp Distribution of living terrestrial vertebrate species highest concentration of diversity shown in red in equatorial regions declining polewards towards the blue end of the spectrum Biodiversity is not evenly distributed rather it varies greatly across the globe as well as within regions Among other factors the diversity of all living things biota depends on temperature precipitation altitude soils geography and the interactions between other species 79 The study of the spatial distribution of organisms species and ecosystems is the science of biogeography 80 81 Diversity consistently measures higher in the tropics and in other localized regions such as the Cape Floristic Region and lower in polar regions generally Rain forests that have had wet climates for a long time such as Yasuni National Park in Ecuador have particularly high biodiversity 82 83 Terrestrial biodiversity is thought to be up to 25 times greater than ocean biodiversity 84 Forests harbour most of Earth s terrestrial biodiversity The conservation of the world s biodiversity is thus utterly dependent on the way in which we interact with and use the world s forests 85 A new method used in 2011 put the total number of species on Earth at 8 7 million of which 2 1 million were estimated to live in the ocean 86 However this estimate seems to under represent the diversity of microorganisms 87 Forests provide habitats for 80 percent of amphibian species 75 percent of bird species and 68 percent of mammal species About 60 percent of all vascular plants are found in tropical forests Mangroves provide breeding grounds and nurseries for numerous species of fish and shellfish and help trap sediments that might otherwise adversely affect seagrass beds and coral reefs which are habitats for many more marine species 85 Forests span around 4 billion acres nearly a third of the earth s land mass and are home to approximately 80 of the world s biodiversity About 1 billion hectares are covered by primary forests Over 700 million hectares of the world s woods are officially protected 88 89 The biodiversity of forests varies considerably according to factors such as forest type geography climate and soils in addition to human use 85 Most forest habitats in temperate regions support relatively few animal and plant species and species that tend to have large geographical distributions while the montane forests of Africa South America and Southeast Asia and lowland forests of Australia coastal Brazil the Caribbean islands Central America and insular Southeast Asia have many species with small geographical distributions 85 Areas with dense human populations and intense agricultural land use such as Europe parts of Bangladesh China India and North America are less intact in terms of their biodiversity Northern Africa southern Australia coastal Brazil Madagascar and South Africa are also identified as areas with striking losses in biodiversity intactness 85 European forests in EU and non EU nations comprise more than 30 of Europe s land mass around 227 million hectares representing an almost 10 growth since 1990 90 91 Latitudinal gradients edit Main article Latitudinal gradients in species diversity Generally there is an increase in biodiversity from the poles to the tropics Thus localities at lower latitudes have more species than localities at higher latitudes This is often referred to as the latitudinal gradient in species diversity Several ecological factors may contribute to the gradient but the ultimate factor behind many of them is the greater mean temperature at the equator compared to that at the poles 92 Even though terrestrial biodiversity declines from the equator to the poles 93 some studies claim that this characteristic is unverified in aquatic ecosystems especially in marine ecosystems 94 The latitudinal distribution of parasites does not appear to follow this rule 80 Also in terrestrial ecosystems the soil bacterial diversity has been shown to be highest in temperate climatic zones 95 and has been attributed to carbon inputs and habitat connectivity 96 In 2016 an alternative hypothesis the fractal biodiversity was proposed to explain the biodiversity latitudinal gradient 97 In this study the species pool size and the fractal nature of ecosystems were combined to clarify some general patterns of this gradient This hypothesis considers temperature moisture and net primary production NPP as the main variables of an ecosystem niche and as the axis of the ecological hypervolume In this way it is possible to build fractal hyper volumes whose fractal dimension rises to three moving towards the equator 98 Biodiversity Hotspot edit A biodiversity hotspot is a region with a high level of endemic species that have experienced great habitat loss 99 The term hotspot was introduced in 1988 by Norman Myers 100 101 102 103 While hotspots are spread all over the world the majority are forest areas and most are located in the tropics Brazil s Atlantic Forest is considered one such hotspot containing roughly 20 000 plant species 1 350 vertebrates and millions of insects about half of which occur nowhere else 104 105 The island of Madagascar and India are also particularly notable Colombia is characterized by high biodiversity with the highest rate of species by area unit worldwide and it has the largest number of endemics species that are not found naturally anywhere else of any country About 10 of the species of the Earth can be found in Colombia including over 1 900 species of bird more than in Europe and North America combined Colombia has 10 of the world s mammals species 14 of the amphibian species and 18 of the bird species of the world 106 Madagascar dry deciduous forests and lowland rainforests possess a high ratio of endemism 107 108 Since the island separated from mainland Africa 66 million years ago many species and ecosystems have evolved independently 109 Indonesia s 17 000 islands cover 735 355 square miles 1 904 560 km2 and contain 10 of the world s flowering plants 12 of mammals and 17 of reptiles amphibians and birds along with nearly 240 million people 110 Many regions of high biodiversity and or endemism arise from specialized habitats which require unusual adaptations for example alpine environments in high mountains or Northern European peat bogs 108 Accurately measuring differences in biodiversity can be difficult Selection bias amongst researchers may contribute to biased empirical research for modern estimates of biodiversity In 1768 Rev Gilbert White succinctly observed of his Selborne Hampshire all nature is so full that that district produces the most variety which is the most examined 111 Evolution editMain article Evolution History edit Biodiversity is the result of 3 5 billion years of evolution 112 The origin of life has not been established by science however some evidence suggests that life may already have been well established only a few hundred million years after the formation of the Earth Until approximately 2 5 billion years ago all life consisted of microorganisms archaea bacteria and single celled protozoans and protists 87 nbsp Apparent marine fossil diversity during the Phanerozoic 113 The history of biodiversity during the Phanerozoic the last 540 million years starts with rapid growth during the Cambrian explosion a period during which nearly every phylum of multicellular organisms first appeared 114 Over the next 400 million years or so invertebrate diversity showed little overall trend and vertebrate diversity shows an overall exponential trend 17 This dramatic rise in diversity was marked by periodic massive losses of diversity classified as mass extinction events 17 A significant loss occurred when rainforests collapsed in the carboniferous 115 The worst was the Permian Triassic extinction event 251 million years ago Vertebrates took 30 million years to recover from this event 116 The biodivertisy of the past is called Paleobiodiversity The fossil record suggests that the last few million years featured the greatest biodiversity in history 17 However not all scientists support this view since there is uncertainty as to how strongly the fossil record is biased by the greater availability and preservation of recent geologic sections 117 Some scientists believe that corrected for sampling artifacts modern biodiversity may not be much different from biodiversity 300 million years ago 114 whereas others consider the fossil record reasonably reflective of the diversification of life 17 Estimates of the present global macroscopic species diversity vary from 2 million to 100 million with a best estimate of somewhere near 9 million 86 the vast majority arthropods 118 Diversity appears to increase continually in the absence of natural selection 119 Diversification edit The existence of a global carrying capacity limiting the amount of life that can live at once is debated as is the question of whether such a limit would also cap the number of species While records of life in the sea show a logistic pattern of growth life on land insects plants and tetrapods shows an exponential rise in diversity 17 As one author states Tetrapods have not yet invaded 64 percent of potentially habitable modes and it could be that without human influence the ecological and taxonomic diversity of tetrapods would continue to increase exponentially until most or all of the available eco space is filled 17 It also appears that the diversity continues to increase over time especially after mass extinctions 120 On the other hand changes through the Phanerozoic correlate much better with the hyperbolic model widely used in population biology demography and macrosociology as well as fossil biodiversity than with exponential and logistic models The latter models imply that changes in diversity are guided by a first order positive feedback more ancestors more descendants and or a negative feedback arising from resource limitation Hyperbolic model implies a second order positive feedback 121 Differences in the strength of the second order feedback due to different intensities of interspecific competition might explain the faster rediversification of ammonoids in comparison to bivalves after the end Permian extinction 121 The hyperbolic pattern of the world population growth arises from a second order positive feedback between the population size and the rate of technological growth 122 The hyperbolic character of biodiversity growth can be similarly accounted for by a feedback between diversity and community structure complexity 122 123 The similarity between the curves of biodiversity and human population probably comes from the fact that both are derived from the interference of the hyperbolic trend with cyclical and stochastic dynamics 122 123 Most biologists agree however that the period since human emergence is part of a new mass extinction named the Holocene extinction event caused primarily by the impact humans are having on the environment 124 It has been argued that the present rate of extinction is sufficient to eliminate most species on the planet Earth within 100 years 125 New species are regularly discovered on average between 5 10 000 new species each year most of them insects and many though discovered are not yet classified estimates are that nearly 90 of all arthropods are not yet classified 118 Most of the terrestrial diversity is found in tropical forests and in general the land has more species than the ocean some 8 7 million species may exist on Earth of which some 2 1 million live in the ocean 86 Role and benefits of biodiversity edit nbsp Summer field in Belgium Hamois The blue flowers are Centaurea cyanus and the red are Papaver rhoeas General ecosystem services edit Further information Ecosystem services From the perspective of the method known as Natural Economy the economic value of 17 ecosystem services for Earth s biosphere calculated in 1997 has an estimated value of US 33 trillion 3 3x1013 per year 126 Ecosystem services are the suite of benefits that ecosystems provide to humanity 127 The natural species or biota are the caretakers of all ecosystems It is as if the natural world is an enormous bank account of capital assets capable of paying life sustaining dividends indefinitely but only if the capital is maintained 128 These services come in three flavors Provisioning services which involve the production of renewable resources e g food wood fresh water 127 Regulating services which are those that lessen environmental change e g climate regulation pest disease control 127 Cultural services represent human value and enjoyment e g landscape aesthetics cultural heritage outdoor recreation and spiritual significance 129 There have been many claims about biodiversity s effect on these ecosystem services especially provisioning and regulating services 127 After an exhaustive survey through peer reviewed literature to evaluate 36 different claims about biodiversity s effect on ecosystem services 14 of those claims have been validated 6 demonstrate mixed support or are unsupported 3 are incorrect and 13 lack enough evidence to draw definitive conclusions 127 Services enhanced edit Provisioning servicesGreater species diversity of plants increases fodder yield synthesis of 271 experimental studies 81 of plants i e diversity within a single species increases overall crop yield synthesis of 575 experimental studies 130 Although another review of 100 experimental studies reports mixed evidence 131 of trees increases overall wood production Synthesis of 53 experimental studies 132 However there is not enough data to draw a conclusion about the effect of tree trait diversity on wood production 127 Regulating servicesGreater species diversity of fish increases the stability of fisheries yield Synthesis of 8 observational studies 127 of natural pest enemies decreases herbivorous pest populations Data from two separate reviews Synthesis of 266 experimental and observational studies 133 Synthesis of 18 observational studies 134 135 Although another review of 38 experimental studies found mixed support for this claim suggesting that in cases where mutual intraguild predation occurs a single predatory species is often more effective 136 of plants decreases disease prevalence on plants Synthesis of 107 experimental studies 137 of plants increases resistance to plant invasion Data from two separate reviews Synthesis of 105 experimental studies 137 Synthesis of 15 experimental studies 138 of plants increases carbon sequestration but note that this finding only relates to actual uptake of carbon dioxide and not long term storage see below Synthesis of 479 experimental studies 81 plants increases soil nutrient remineralization Synthesis of 103 experimental studies 137 of plants increases soil organic matter Synthesis of 85 experimental studies 137 Services with mixed evidence edit Provisioning servicesNone to dateRegulating servicesGreater species diversity of plants may or may not decrease herbivorous pest populations Data from two separate reviews suggest that greater diversity decreases pest populations Synthesis of 40 observational studies 139 Synthesis of 100 experimental studies 131 One review found mixed evidence Synthesis of 287 experimental studies 140 while another found contrary evidence Synthesis of 100 experimental studies 137 Greater species diversity of animals may or may not decrease disease prevalence on those animals Synthesis of 45 experimental and observational studies 141 although a 2013 study offers more support showing that biodiversity may in fact enhance disease resistance within animal communities at least in amphibian frog ponds 142 Many more studies must be published in support of diversity to sway the balance of evidence will be such that we can draw a general rule on this service Greater species and trait diversity of plants may or may not increase long term carbon storage Synthesis of 33 observational studies 127 Greater pollinator diversity may or may not increase pollination Synthesis of 7 observational studies 127 but a publication from March 2013 suggests that increased native pollinator diversity enhances pollen deposition although not necessarily fruit set as the authors would have you believe for details explore their lengthy supplementary material 143 Services hindered edit Provisioning servicesGreater species diversity of plants reduces primary production Synthesis of 7 experimental studies 81 Regulating servicesgreater genetic and species diversity of a number of organisms reduces freshwater purification Synthesis of 8 experimental studies although an attempt by the authors to investigate the effect of detritivore diversity on freshwater purification was unsuccessful due to a lack of available evidence only 1 observational study was found 127 Effect of species diversity of plants on biofuel yield In a survey of the literature the investigators only found 3 studies 127 Effect of species diversity of fish on fishery yield In a survey of the literature the investigators only found 4 experimental studies and 1 observational study 127 Regulating servicesEffect of species diversity on the stability of biofuel yield In a survey of the literature the investigators did not find any studies 127 Effect of species diversity of plants on the stability of fodder yield In a survey of the literature the investigators only found 2 studies 127 Effect of species diversity of plants on the stability of crop yield In a survey of the literature the investigators only found 1 study 127 Effect of genetic diversity of plants on the stability of crop yield In a survey of the literature the investigators only found 2 studies 127 Effect of diversity on the stability of wood production In a survey of the literature the investigators could not find any studies 127 Effect of species diversity of multiple taxa on erosion control In a survey of the literature the investigators could not find any studies they did however find studies on the effect of species diversity and root biomass 127 Effect of diversity on flood regulation In a survey of the literature the investigators could not find any studies 127 Effect of species and trait diversity of plants on soil moisture In a survey of the literature the investigators only found 2 studies 127 Other sources have reported somewhat conflicting results and in 1997 Robert Costanza and his colleagues reported the estimated global value of ecosystem services not captured in traditional markets at an average of 33 trillion annually 144 Since the Stone Age species loss has accelerated above the average basal rate driven by human activity Estimates of species losses are at a rate 100 10 000 times as fast as is typical in the fossil record 145 Biodiversity also affords many non material benefits including spiritual and aesthetic values knowledge systems and education 145 Agriculture edit See also Agricultural biodiversity nbsp Amazon Rainforest in South AmericaAgricultural diversity can be divided into two categories intraspecific diversity which includes the genetic variation within a single species like the potato Solanum tuberosum that is composed of many different forms and types e g in the U S they might compare russet potatoes with new potatoes or purple potatoes all different but all part of the same species S tuberosum The other category of agricultural diversity is called interspecific diversity and refers to the number and types of different species Thinking about this diversity we might note that many small vegetable farmers grow many different crops like potatoes and also carrots peppers lettuce etc Agricultural diversity can also be divided by whether it is planned diversity or associated diversity This is a functional classification that we impose and not an intrinsic feature of life or diversity Planned diversity includes the crops which a farmer has encouraged planted or raised e g crops covers symbionts and livestock among others which can be contrasted with the associated diversity that arrives among the crops uninvited e g herbivores weed species and pathogens among others 146 Associated biodiversity can be damaging or beneficial The beneficial associated biodiversity include for instance wild pollinators such as wild bees and syrphid flies that pollinate crops 147 and natural enemies and antagonists to pests and pathogens Beneficial associated biodiversity occurs abundantly in crop fields and provide multiple ecosystem services such as pest control nutrient cycling and pollination that support crop production 148 The control of damaging associated biodiversity is one of the great agricultural challenges that farmers face On monoculture farms the approach is generally to suppress damaging associated diversity using a suite of biologically destructive pesticides mechanized tools and transgenic engineering techniques then to rotate crops Although some polyculture farmers use the same techniques they also employ integrated pest management strategies as well as more labor intensive strategies but generally less dependent on capital biotechnology and energy Interspecific crop diversity is in part responsible for offering variety in what we eat Intraspecific diversity the variety of alleles within a single species also offers us a choice in our diets If a crop fails in a monoculture we rely on agricultural diversity to replant the land with something new If a wheat crop is destroyed by a pest we may plant a hardier variety of wheat the next year relying on intraspecific diversity We may forgo wheat production in that area and plant a different species altogether relying on interspecific diversity Even an agricultural society that primarily grows monocultures relies on biodiversity at some point The Irish potato blight of 1846 was a major factor in the deaths of one million people and the emigration of about two million It was the result of planting only two potato varieties both vulnerable to the blight Phytophthora infestans which arrived in 1845 146 When rice grassy stunt virus struck rice fields from Indonesia to India in the 1970s 6 273 varieties were tested for resistance 149 Only one was resistant an Indian variety and known to science only since 1966 149 This variety formed a hybrid with other varieties and is now widely grown 149 Coffee rust attacked coffee plantations in Sri Lanka Brazil and Central America in 1970 A resistant variety was found in Ethiopia 150 The diseases are themselves a form of biodiversity Monoculture was a contributing factor to several agricultural disasters including the European wine industry collapse in the late 19th century and the US southern corn leaf blight epidemic of 1970 151 Although about 80 percent of humans food supply comes from just 20 kinds of plants 152 humans use at least 40 000 species 153 Earth s surviving biodiversity provides resources for increasing the range of food and other products suitable for human use although the present extinction rate shrinks that potential 125 Human health edit nbsp The diverse forest canopy on Barro Colorado Island Panama yielded this display of different fruitBiodiversity s relevance to human health is becoming an international political issue as scientific evidence builds on the global health implications of biodiversity loss 154 155 156 This issue is closely linked with the issue of climate change 157 as many of the anticipated health risks of climate change are associated with changes in biodiversity e g changes in populations and distribution of disease vectors scarcity of fresh water impacts on agricultural biodiversity and food resources etc This is because the species most likely to disappear are those that buffer against infectious disease transmission while surviving species tend to be the ones that increase disease transmission such as that of West Nile Virus Lyme disease and Hantavirus according to a study done co authored by Felicia Keesing an ecologist at Bard College and Drew Harvell associate director for Environment of the Atkinson Center for a Sustainable Future ACSF at Cornell University 158 The growing demand and lack of drinkable water on the planet presents an additional challenge to the future of human health Partly the problem lies in the success of water suppliers to increase supplies and failure of groups promoting the preservation of water resources 159 While the distribution of clean water increases in some parts of the world it remains unequal According to the World Health Organisation 2018 only 71 of the global population used a safely managed drinking water service 160 Some of the health issues influenced by biodiversity include dietary health and nutrition security infectious disease medical science and medicinal resources social and psychological health 161 Biodiversity is also known to have an important role in reducing disaster risk and in post disaster relief and recovery efforts 162 163 According to the United Nations Environment Programme a pathogen like a virus have more chances to meet resistance in a diverse population Therefore in a population genetically similar it expands more easily For example the COVID 19 pandemic had less chances to occur in a world with higher biodiversity 164 A broad literature review published in 2010 by Nature journal Impacts of biodiversity on the emergence and transmission of infectious disease found this to be broadly true within real environments 165 Although some small population exceptions were found to exist on average a collapse in biodiversity significantly increased the spread amp spillover of infectious diseases Biodiversity provides critical support for drug discovery and the availability of medicinal resources 166 167 A significant proportion of drugs are derived directly or indirectly from biological sources at least 50 of the pharmaceutical compounds on the US market are derived from plants animals and microorganisms while about 80 of the world population depends on medicines from nature used in either modern or traditional medical practice for primary healthcare 155 Only a tiny fraction of wild species has been investigated for medical potential Biodiversity has been critical to advances throughout the field of bionics Evidence from market analysis and biodiversity science indicates that the decline in output from the pharmaceutical sector since the mid 1980s can be attributed to a move away from natural product exploration bioprospecting in favour of genomics and synthetic chemistry indeed claims about the value of undiscovered pharmaceuticals may not provide enough incentive for companies in free markets to search for them because of the high cost of development 168 meanwhile natural products have a long history of supporting significant economic and health innovation 169 170 Marine ecosystems are particularly important 171 although inappropriate bioprospecting can increase biodiversity loss as well as violating the laws of the communities and states from which the resources are taken 172 173 174 Business and industry edit nbsp Agriculture production pictured is a tractor and a chaser binMany industrial materials derive directly from biological sources These include building materials fibers dyes rubber and oil Biodiversity is also important to the security of resources such as water timber paper fiber and food 175 176 177 As a result biodiversity loss is a significant risk factor in business development and a threat to long term economic sustainability 178 179 Leisure cultural and aesthetic value edit Biodiversity enriches leisure activities such as birdwatching or natural history study Popular activities such as gardening and fishkeeping strongly depend on biodiversity The number of species involved in such pursuits is in the tens of thousands though the majority do not enter commerce clarification needed The relationships between the original natural areas of these often exotic animals and plants and commercial collectors suppliers breeders propagators and those who promote their understanding and enjoyment are complex and poorly understood The general public responds well to exposure to rare and unusual organisms reflecting their inherent value Philosophically it could be argued that biodiversity has intrinsic aesthetic and spiritual value to mankind in and of itself This idea can be used as a counterweight to the notion that tropical forests and other ecological realms are only worthy of conservation because of the services they provide 180 nbsp Eagle Creek Oregon hikingEcological services edit See also Ecological effects of biodiversity Biodiversity supports many ecosystem services There is now unequivocal evidence that biodiversity loss reduces the efficiency by which ecological communities capture biologically essential resources produce biomass decompose and recycle biologically essential nutrients There is mounting evidence that biodiversity increases the stability of ecosystem functions through time Diverse communities are more productive because they contain key species that have a large influence on productivity and differences in functional traits among organisms increase total resource capture The impacts of diversity loss on ecological processes might be sufficiently large to rival the impacts of many other global drivers of environmental change Maintaining multiple ecosystem processes at multiple places and times requires higher levels of biodiversity than does a single process at a single place and time 127 It plays a part in regulating the chemistry of our atmosphere and water supply Biodiversity is directly involved in water purification recycling nutrients and providing fertile soils Experiments with controlled environments have shown that humans cannot easily build ecosystems to support human needs 181 for example insect pollination cannot be mimicked though there have been attempts to create artificial pollinators using unmanned aerial vehicles 182 The economic activity of pollination alone represented between 2 1 14 6 billion in 2003 183 Measuring biodiversity editThis section is an excerpt from Measurement of biodiversity edit A variety of objective means exist to empirically measure biodiversity Each measure relates to a particular use of the data and is likely to be associated with the variety of genes Biodiversity is commonly measured in terms of taxonomic richness of a geographic area over a time interval In order to calculate biodiversity species evenness species richness and species diversity are to be obtained first Species evenness 184 is the relative number of individuals of each species in a given area Species richness 185 is the number of species present in a given area Species diversity 186 is the relationship between species evenness and species richness There are many ways to measure biodiversity within a given ecosystem However the two most popular are Shannon Weaver diversity index 187 commonly referred to as Shannon diversity index and the other is Simpsons diversity index 188 Although many scientists prefer to use Shannon s diversity index simply because it takes into account species richness 189 Analytical limits edit Less than 1 of all species that have been described have been studied beyond noting their existence 190 The vast majority of Earth s species are microbial Contemporary biodiversity physics is firmly fixated on the visible macroscopic world 191 For example microbial life is metabolically and environmentally more diverse than multicellular life see e g extremophile On the tree of life based on analyses of small subunit ribosomal RNA visible life consists of barely noticeable twigs The inverse relationship of size and population recurs higher on the evolutionary ladder to a first approximation all multicellular species on Earth are insects 192 Insect extinction rates are high supporting the Holocene extinction hypothesis 193 194 Biodiversity changes other than losses editIntroduced and invasive species edit Main articles Introduced species and Invasive species nbsp Male Lophura nycthemera silver pheasant a native of East Asia that has been introduced into parts of Europe for ornamental reasonsBarriers such as large rivers seas oceans mountains and deserts encourage diversity by enabling independent evolution on either side of the barrier via the process of allopatric speciation The term invasive species is applied to species that breach the natural barriers that would normally keep them constrained Without barriers such species occupy new territory often supplanting native species by occupying their niches or by using resources that would normally sustain native species The number of species invasions has been on the rise at least since the beginning of the 1900s Species are increasingly being moved by humans on purpose and accidentally In some cases the invaders are causing drastic changes and damage to their new habitats e g zebra mussels and the emerald ash borer in the Great Lakes region and the lion fish along the North American Atlantic coast Some evidence suggests that invasive species are competitive in their new habitats because they are subject to less pathogen disturbance 195 Others report confounding evidence that occasionally suggest that species rich communities harbor many native and exotic species simultaneously 196 while some say that diverse ecosystems are more resilient and resist invasive plants and animals 197 An important question is do invasive species cause extinctions Many studies cite effects of invasive species on natives 198 but not extinctions Invasive species seem to increase local i e alpha diversity diversity which decreases turnover of diversity i e beta diversity Overall gamma diversity may be lowered because species are going extinct because of other causes 199 but even some of the most insidious invaders e g Dutch elm disease emerald ash borer chestnut blight in North America have not caused their host species to become extinct Extirpation population decline and homogenization of regional biodiversity are much more common Human activities have frequently been the cause of invasive species circumventing their barriers 200 by introducing them for food and other purposes Human activities therefore allow species to migrate to new areas and thus become invasive occurred on time scales much shorter than historically have been required for a species to extend its range Not all introduced species are invasive nor all invasive species deliberately introduced In cases such as the zebra mussel invasion of US waterways was unintentional In other cases such as mongooses in Hawaii the introduction is deliberate but ineffective nocturnal rats were not vulnerable to the diurnal mongoose In other cases such as oil palms in Indonesia and Malaysia the introduction produces substantial economic benefits but the benefits are accompanied by costly unintended consequences Finally an introduced species may unintentionally injure a species that depends on the species it replaces In Belgium Prunus spinosa from Eastern Europe leafs much sooner than its West European counterparts disrupting the feeding habits of the Thecla betulae butterfly which feeds on the leaves Introducing new species often leaves endemic and other local species unable to compete with the exotic species and unable to survive The exotic organisms may be predators parasites or may outcompete indigenous species for nutrients water and light At present several countries have already imported so many exotic species particularly agricultural and ornamental plants that their indigenous fauna flora may be outnumbered For example the introduction of kudzu from Southeast Asia to Canada and the United States has threatened biodiversity in certain areas 201 Another example are pines which have invaded forests shrublands and grasslands in the southern hemisphere 202 Hybridization and genetic pollution edit nbsp The Yecoro wheat right cultivar is sensitive to salinity plants resulting from a hybrid cross with cultivar W4910 left show greater tolerance to high salinityEndemic species can be threatened with extinction 203 through the process of genetic pollution i e uncontrolled hybridization introgression and genetic swamping Genetic pollution leads to homogenization or replacement of local genomes as a result of either a numerical and or fitness advantage of an introduced species 204 Hybridization and introgression are side effects of introduction and invasion These phenomena can be especially detrimental to rare species that come into contact with more abundant ones The abundant species can interbreed with the rare species swamping its gene pool This problem is not always apparent from morphological outward appearance observations alone Some degree of gene flow is normal adaptation and not all gene and genotype constellations can be preserved However hybridization with or without introgression may nevertheless threaten a rare species existence 205 206 In agriculture and animal husbandry the Green Revolution popularized the use of conventional hybridization to increase yield Often hybridized breeds originated in developed countries and were further hybridized with local varieties in the developing world to create high yield strains resistant to local climate and diseases Local governments and industry have been pushing hybridization Formerly huge gene pools of various wild and indigenous breeds have collapsed causing widespread genetic erosion and genetic pollution This has resulted in the loss of genetic diversity and biodiversity as a whole 207 Genetically modified organisms contain genetic material that is altered through genetic engineering Genetically modified crops have become a common source for genetic pollution in not only wild varieties but also in domesticated varieties derived from classical hybridization 208 209 210 211 212 Genetic erosion and genetic pollution have the potential to destroy unique genotypes threatening future access to food security A decrease in genetic diversity weakens the ability of crops and livestock to be hybridized to resist disease and survive changes in climate 207 Conservation editMain article Conservation biology nbsp A schematic image illustrating the relationship between biodiversity ecosystem services human well being and poverty 213 The illustration shows where conservation action strategies and plans can influence the drivers of the current biodiversity crisis at local regional to global scales nbsp The retreat of Aletsch Glacier in the Swiss Alps situation in 1979 1991 and 2002 due to global warming Conservation biology matured in the mid 20th century as ecologists naturalists and other scientists began to research and address issues pertaining to global biodiversity declines 214 215 216 The conservation ethic advocates management of natural resources for the purpose of sustaining biodiversity in species ecosystems the evolutionary process and human culture and society 61 214 216 217 218 Conservation biology is reforming around strategic plans to protect biodiversity 214 219 220 221 Preserving global biodiversity is a priority in strategic conservation plans that are designed to engage public policy and concerns affecting local regional and global scales of communities ecosystems and cultures 222 Action plans identify ways of sustaining human well being employing natural capital market capital and ecosystem services 223 224 In the EU Directive 1999 22 EC zoos are described as having a role in the preservation of the biodiversity of wildlife animals by conducting research or participation in breeding programs 225 Protection and restoration techniques edit Removal of exotic species will allow the species that they have negatively impacted to recover their ecological niches Exotic species that have become pests can be identified taxonomically e g with Digital Automated Identification SYstem DAISY using the barcode of life 226 227 Removal is practical only given large groups of individuals due to the economic cost As sustainable populations of the remaining native species in an area become assured missing species that are candidates for reintroduction can be identified using databases such as the Encyclopedia of Life and the Global Biodiversity Information Facility Biodiversity banking places a monetary value on biodiversity One example is the Australian Native Vegetation Management Framework Gene banks are collections of specimens and genetic material Some banks intend to reintroduce banked species to the ecosystem e g via tree nurseries 228 Reduction and better targeting of pesticides allows more species to survive in agricultural and urbanized areas Location specific approaches may be less useful for protecting migratory species One approach is to create wildlife corridors that correspond to the animals movements National and other boundaries can complicate corridor creation 229 Priorities for resource allocation edit Focusing on limited areas of higher potential biodiversity promises greater immediate return on investment than spreading resources evenly or focusing on areas of little diversity but greater interest in biodiversity 230 A second strategy focuses on areas that retain most of their original diversity which typically require little or no restoration These are typically non urbanized non agricultural areas Tropical areas often fit both criteria given their natively high diversity and relative lack of development 231 Protected areas editFurther information Protected areas nbsp Mother and child at an orangutan rehab facility in MalaysiaProtected areas including forest reserves and biosphere reserves serve many functions including for affording protection to wild animals and their habitat 232 Protected areas have been set up all over the world with the specific aim of protecting and conserving plants and animals Some scientists have called on the global community to designate as protected areas of 30 percent of the planet by 2030 and 50 percent by 2050 in order to mitigate biodiversity loss from anthropogenic causes 233 234 The target of protecting 30 of the area of the planet by the year 2030 30 by 30 was adopted by almost 200 countries in the 2022 United Nations Biodiversity Conference At the moment of adoption December 2022 17 of land territory and 10 of ocean territory were protected 235 In a study published 4 September 2020 in Science Advances researchers mapped out regions that can help meet critical conservation and climate goals 236 Protected areas safeguard nature and cultural resources and contribute to livelihoods particularly at local level There are over 238 563 designated protected areas worldwide equivalent to 14 9 percent of the earth s land surface varying in their extension level of protection and type of management IUCN 2018 237 nbsp Percentage of forest in legally protected areas as of 2020 85 Forest protected areas are a subset of all protected areas in which a significant portion of the area is forest 85 This may be the whole or only a part of the protected area 85 Globally 18 percent of the world s forest area or more than 700 million hectares fall within legally established protected areas such as national parks conservation areas and game reserves 85 The benefits of protected areas extend beyond their immediate environment and time In addition to conserving nature protected areas are crucial for securing the long term delivery of ecosystem services They provide numerous benefits including the conservation of genetic resources for food and agriculture the provision of medicine and health benefits the provision of water recreation and tourism and for acting as a buffer against disaster Increasingly there is acknowledgement of the wider socioeconomic values of these natural ecosystems and of the ecosystem services they can provide 238 Forest protected areas in particular play many important roles including as a provider of habitat shelter food and genetic materials and as a buffer against disaster They deliver stable supplies of many goods and environmental services The role of protected areas especially forest protected areas in mitigating and adapting to climate change has increasingly been recognized over the last few years Protected areas not only store and sequester carbon i e the global network of protected areas stores at least 15 percent of terrestrial carbon but also enable species to adapt to changing climate patterns by providing refuges and migration corridors Protected areas also protect people from sudden climate events and reduce their vulnerability to weather induced problems such as floods and droughts UNEP WCMC 2016 National parks edit Main article National park A national park is a large natural or near natural area set aside to protect large scale ecological processes which also provide a foundation for environmentally and culturally compatible spiritual scientific educational recreational and visitor opportunities These areas are selected by governments or private organizations to protect natural biodiversity along with its underlying ecological structure and supporting environmental processes and to promote education and recreation The International Union for Conservation of Nature IUCN and its World Commission on Protected Areas WCPA has defined National Park as its Category II type of protected areas 239 National parks are usually owned and managed by national or state governments In some cases a limit is placed on the number of visitors permitted to enter certain fragile areas Designated trails or roads are created The visitors are allowed to enter only for study cultural and recreation purposes Forestry operations grazing of animals and hunting of animals are regulated and the exploitation of habitat or wildlife is banned Wildlife sanctuary edit Wildlife sanctuaries aim only at the conservation of species and have the following features The boundaries of the sanctuaries are not limited by state legislation The killing hunting or capturing of any species is prohibited except by or under the control of the highest authority in the department which is responsible for the management of the sanctuary Private ownership may be allowed Forestry and other usages can also be permitted Forest reserves edit There is an estimated 726 million ha of forest in protected areas worldwide Of the six major world regions South America has the highest share of forests in protected areas 31 percent 240 The forests play a vital role in harboring more than 45 000 floral and 81 000 faunal species of which 5150 floral and 1837 faunal species are endemic 241 In addition there are 60 065 different tree species in the world 242 Plant and animal species confined to a specific geographical area are called endemic species In forest reserves rights to activities like hunting and grazing are sometimes given to communities living on the fringes of the forest who sustain their livelihood partially or wholly from forest resources or products The unclassed forests cover 6 4 percent of the total forest area and they are marked by the following characteristics They are large inaccessible forests Many of these are unoccupied They are ecologically and economically less important Approximately 50 million hectares or 24 of European forest land is protected for biodiversity and landscape protection Forests allocated for soil water and other ecosystem services encompass around 72 million hectares 32 of European forest area 243 244 245 Steps to conserve the forest cover edit Further information Forest cover An extensive reforestation afforestation programme should be followed Alternative environment friendly sources of fuel energy such as biogas other than wood should be used Loss of biodiversity due to forest fire is a major problem immediate steps to prevent forest fire need to be taken Overgrazing by cattle can damage a forest seriously Therefore certain steps should be taken to prevent overgrazing by cattle Hunting and poaching should be banned Zoological parks edit In zoological parks or zoos live animals are kept for public recreation education and conservation purposes Modern zoos offer veterinary facilities provide opportunities for threatened species to breed in captivity and usually build environments that simulate the native habitats of the animals in their care Zoos play a major role in creating awareness about the need to conserve nature Botanical gardens edit In botanical gardens plants are grown and displayed primarily for scientific and educational purposes They consist of a collection of living plants grown outdoors or under glass in greenhouses and conservatories Also a botanical garden may include a collection of dried plants or herbarium and such facilities as lecture rooms laboratories libraries museums and experimental or research plantings Role of society editTransformative change edit In 2019 a summary for policymakers of the largest most comprehensive study to date of biodiversity and ecosystem services the Global Assessment Report on Biodiversity and Ecosystem Services was published by the Intergovernmental Science Policy Platform on Biodiversity and Ecosystem Services IPBES It stated that the state of nature has deteriorated at an unprecedented and accelerating rate To fix the problem humanity will need a transformative change including sustainable agriculture reductions in consumption and waste fishing quotas and collaborative water management 246 247 Citizen science edit Citizen science also known as public participation in scientific research has been widely used in environmental sciences and is particularly popular in a biodiversity related context It has been used to enable scientists to involve the general public in biodiversity research thereby enabling the scientists to collect data that they would otherwise not have been able to obtain An online survey of 1 160 CS participants across 63 biodiversity citizen science projects in Europe Australia and New Zealand reported positive changes in a content process and nature of science knowledge b skills of science inquiry c self efficacy for science and the environment d interest in science and the environment e motivation for science and the environment and f behaviour towards the environment 248 Volunteer observers have made significant contributions to on the ground knowledge about biodiversity and recent improvements in technology have helped increase the flow and quality of occurrences from citizen sources A 2016 study published in Biological Conservation 249 registers the massive contributions that citizen scientists already make to data mediated by the Global Biodiversity Information Facility GBIF Despite some limitations of the dataset level analysis it is clear that nearly half of all occurrence records shared through the GBIF network come from datasets with significant volunteer contributions Recording and sharing observations are enabled by several global scale platforms including iNaturalist and eBird 250 251 Legal status edit nbsp A great deal of work is occurring to preserve the natural characteristics of Hopetoun Falls Australia while continuing to allow visitor access International edit United Nations Convention on Biological Diversity 1992 and Cartagena Protocol on Biosafety Convention on International Trade in Endangered Species CITES Ramsar Convention Wetlands Bonn Convention on Migratory Species UNESCO Convention concerning the Protection of the World s Cultural and Natural Heritage indirectly by protecting biodiversity habitats UNESCO Global Geoparks Regional Conventions such as the Apia Convention Bilateral agreements such as the Japan Australia Migratory Bird Agreement Global agreements such as the Convention on Biological Diversity give sovereign national rights over biological resources not property The agreements commit countries to conserve biodiversity develop resources for sustainability and share the benefits resulting from their use Biodiverse countries that allow bioprospecting or collection of natural products expect a share of the benefits rather than allowing the individual or institution that discovers exploits the resource to capture them privately Bioprospecting can become a type of biopiracy when such principles are not respected 252 Sovereignty principles can rely upon what is better known as Access and Benefit Sharing Agreements ABAs The Convention on Biodiversity implies informed consent between the source country and the collector to establish which resource will be used and for what and to settle on a fair agreement on benefit sharing On the 19 of December 2022 during the 2022 United Nations Biodiversity Conference every country on earth with the exception of the United States and the Holy See signed onto the agreement which includes protecting 30 of land and oceans by 2030 30 by 30 and 22 other targets intended to reduce biodiversity loss 235 253 254 The agreement includes also recovering 30 of earth degraded ecosystems and increasing funding for biodiversity issues 255 European Union edit In May 2020 the European Union published its Biodiversity Strategy for 2030 The biodiversity strategy is an essential part of the climate change mitigation strategy of the European Union From the 25 of the European budget that will go to fight climate change large part will go to restore biodiversity 221 and nature based solutions The EU Biodiversity Strategy for 2030 include the next targets Protect 30 of the sea territory and 30 of the land territory especially Old growth forests Plant 3 billion trees by 2030 Restore at least 25 000 kilometers of rivers so they will become free flowing Reduce the use of Pesticides by 50 by 2030 Increase Organic farming In linked EU program From Farm to Fork it is said that the target is making 25 of EU agriculture organic by 2030 256 Increase biodiversity in agriculture Give 20 billion per year to the issue and make it part of the business practice Approximately half of the global GDP depend on nature In Europe many parts of the economy that generate trillions of euros per year depend on nature The benefits of Natura 2000 alone in Europe are 200 300 billion per year 257 National level laws edit Biodiversity is taken into account in some political and judicial decisions The relationship between law and ecosystems is very ancient and has consequences for biodiversity It is related to private and public property rights It can define protection for threatened ecosystems but also some rights and duties for example fishing and hunting rights citation needed Law regarding species is more recent It defines species that must be protected because they may be threatened by extinction The U S Endangered Species Act is an example of an attempt to address the law and species issue Laws regarding gene pools are only about a century old 258 Domestication and plant breeding methods are not new but advances in genetic engineering have led to tighter laws covering distribution of genetically modified organisms gene patents and process patents 259 Governments struggle to decide whether to focus on for example genes genomes or organisms and species citation needed Uniform approval for use of biodiversity as a legal standard has not been achieved however Bosselman argues that biodiversity should not be used as a legal standard claiming that the remaining areas of scientific uncertainty cause unacceptable administrative waste and increase litigation without promoting preservation goals 260 India passed the Biological Diversity Act in 2002 for the conservation of biological diversity in India The Act also provides mechanisms for equitable sharing of benefits from the use of traditional biological resources and knowledge See also editEcological indicator Genetic diversity Global biodiversity Index of biodiversity articles International Day for Biological Diversity Kunming Montreal Global Biodiversity Framework Megadiverse countries Soil biodiversity Species diversity 30 by 30References edit What is biodiversity PDF United Nations Environment Programme World Conservation Monitoring Centre Tracy Benjamin F 2000 Patterns of plant species richness in pasture lands of the northeast United States Plant Ecology 149 2 169 180 doi 10 1023 a 1026536223478 ISSN 1385 0237 S2CID 26006709 Excite News Hints of life on what was thought to be desolate early Earth apnews excite com 23 October 2015 Archived from the original on 23 October 2015 Retrieved 5 September 2022 a b Dirzo Rodolfo Ceballos Gerardo Ehrlich Paul R 2022 Circling the drain the extinction crisis and the future of humanity Philosophical Transactions of the Royal Society B 377 1857 doi 10 1098 rstb 2021 0378 PMC 9237743 PMID 35757873 S2CID 250055843 Harris J Arthur 1916 The Variable Desert The Scientific Monthly 3 1 41 50 JSTOR 6182 Dasmann Raymond F 1967 A Different Kind of Country Kirkus Reviews Retrieved 7 August 2022 Brown William Y Brown 9 August 2011 Conserving Biological Diversity Brookings Institution Retrieved 7 August 2022 Terbogh John 1974 The Preservation of Natural Diversity The Problem of Extinction Prone Species BioScience 24 12 715 722 doi 10 2307 1297090 JSTOR 1297090 Soule Michael E Wilcox Bruce A 1980 Conservation biology an evolutionary ecological perspective Sunder land Mass Sinauer Associates ISBN 978 0 87893 800 1 Robert E Jenkins Nature org 18 August 2011 Archived from the original on 19 September 2012 Retrieved 24 September 2011 Wilson E O 1988 Biodiversity National Academy Press p vi doi 10 17226 989 ISBN 978 0 309 03739 6 PMID 25032475 Tangley Laura 1985 A New Plan to Conserve the Earth s Biota BioScience 35 6 334 336 341 doi 10 1093 bioscience 35 6 334 JSTOR 1309899 Wilson E O 1 January 1988 Biodiversity National Academies Press ISBN 978 0 309 03739 6 online edition Archived 13 September 2006 at the Wayback Machine Global Biodiversity Assessment Summary for Policy makers Cambridge University Press 1995 ISBN 978 0 521 56481 6 Annex 6 Glossary Used as source by Biodiversity Glossary of terms related to the CBD Archived 10 September 2011 at the Wayback Machine Belgian Clearing House Mechanism Retrieved 26 April 2006 Tor Bjorn Larsson 2001 Biodiversity evaluation tools for European forests Wiley Blackwell p 178 ISBN 978 87 16 16434 6 Retrieved 28 June 2011 Davis Intro To Env Engg Sie 4E McGraw Hill Education India Pvt Ltd p 4 ISBN 978 0 07 067117 1 Retrieved 28 June 2011 a b c d e f g h Sahney S Benton M J Ferry Paul 2010 Links between global taxonomic diversity ecological diversity and the expansion of vertebrates on land Biology Letters 6 4 544 547 doi 10 1098 rsbl 2009 1024 PMC 2936204 PMID 20106856 Campbell AK 2003 Save those molecules molecular biodiversity and life Journal of Applied Ecology 40 2 193 203 Bibcode 2003JApEc 40 193C doi 10 1046 j 1365 2664 2003 00803 x Lefcheck Jon 20 October 2014 What is functional diversity and why do we care sample ECOLOGY Retrieved 22 December 2015 Walker Brian H 1992 Biodiversity and Ecological Redundancy Conservation Biology 6 1 18 23 Bibcode 1992ConBi 6 18W doi 10 1046 j 1523 1739 1992 610018 x a b c Wilcox Bruce A 1984 In situ conservation of genetic resources determinants of minimum area requirements In National Parks Conservation and Development Proceedings of the World Congress on National Parks J A McNeely and K R Miller Smithsonian Institution Press pp 18 30 a b D L Hawksworth 1996 Biodiversity measurement and estimation Philosophical Transactions of the Royal Society of London Series B Biological Sciences Springer 345 1311 6 doi 10 1098 rstb 1994 0081 ISBN 978 0 412 75220 9 PMID 7972355 Retrieved 28 June 2011 Gaston Kevin J Spicer John I 13 February 2004 Biodiversity An Introduction Wiley ISBN 978 1 4051 1857 6 Belanger J Pilling D 2019 The State of the World s Biodiversity for Food and Agriculture PDF Rome FAO p 4 ISBN 978 92 5 131270 4 Mora Camilo Tittensor Derek P Adl Sina Simpson Alastair G B Worm Boris Mace Georgina M 23 August 2011 How Many Species Are There on Earth and in the Ocean PLOS Biology 9 8 e1001127 doi 10 1371 journal pbio 1001127 PMC 3160336 PMID 21886479 Wilson J Bastow Peet Robert K Dengler Jurgen Partel Meelis 1 August 2012 Plant species richness the world records Journal of Vegetation Science 23 4 796 802 Bibcode 2012JVegS 23 796W doi 10 1111 j 1654 1103 2012 01400 x S2CID 53548257 Appeltans W Ahyong S T Anderson G Angel M V Artois T et al 2012 The Magnitude of Global Marine Species Diversity Current Biology 22 23 2189 2202 doi 10 1016 j cub 2012 09 036 hdl 1942 14524 PMID 23159596 Numbers of Insects Species and Individuals Smithsonian Institution Archived from the original on 15 January 2024 Galus Christine 5 March 2007 Protection de la biodiversite un inventaire difficile Le Monde in French Archived from the original on 1 April 2023 Cheung Louisa 31 July 2006 Thousands of microbes in one gulp BBC NEWS Archived from the original on 23 December 2022 Hawksworth D L 24 July 2012 Global species numbers of fungi are tropical studies and molecular approaches contributing to a more robust estimate Biodiversity and Conservation 21 9 2425 2433 Bibcode 2012BiCon 21 2425H doi 10 1007 s10531 012 0335 x S2CID 15087855 Hawksworth D 2001 The magnitude of fungal diversity The 1 5 million species estimate revisited Mycological Research 105 12 1422 1432 doi 10 1017 S0953756201004725 S2CID 56122588 Acari at University of Michigan Museum of Zoology Web Page Insects ummz lsa umich edu 10 November 2003 Retrieved 21 June 2009 Fact Sheet Expedition Overview PDF J Craig Venter Institute Archived from the original PDF on 29 June 2010 Retrieved 29 August 2010 Mirsky Steve 21 March 2007 Naturally Speaking Finding Nature s Treasure Trove with the Global Ocean Sampling Expedition Scientific American Retrieved 4 May 2011 Article collections published by the Public Library of Science PLoS Collections doi 10 1371 issue pcol v06 i02 inactive 31 January 2024 Archived from the original on 12 September 2012 Retrieved 24 September 2011 a href Template Cite journal html title Template Cite journal cite journal a Cite journal requires journal help CS1 maint DOI inactive as of January 2024 link McKie Robin 25 September 2005 Discovery of new species and extermination at high rate The Guardian London Bautista Luis M Pantoja Juan Carlos 2005 What species should we study next Bulletin of the British Ecological Society 36 4 27 28 hdl 10261 43928 Living Planet Index World Our World in Data 13 October 2022 Archived from the original on 8 October 2023 Data source World Wildlife Fund WWF and Zoological Society of London Whiting Kate 17 October 2022 6 charts that show the state of biodiversity and nature loss and how we can go nature positive World Economic Forum Archived from the original on 25 September 2023 Regional data from How does the Living Planet Index vary by region Our World in Data 13 October 2022 Archived from the original on 20 September 2023 Data source Living Planet Report 2022 World Wildlife Fund WWF and Zoological Society of London Gabriel Sigmar 9 March 2007 30 of all species lost by 2050 BBC News a b Reid Walter V 1995 Reversing the loss of biodiversity An overview of international measures Arid Lands Newsletter Ag arizona edu Pimm S L Russell G J Gittleman J L Brooks T M 1995 The Future of Biodiversity PDF Science 269 5222 347 350 Bibcode 1995Sci 269 347P doi 10 1126 science 269 5222 347 PMID 17841251 S2CID 35154695 Archived from the original PDF on 15 July 2011 Retrieved 4 May 2011 Carrington D 2 February 2021 Economics of biodiversity review what are the recommendations The Guardian Retrieved 17 December 2021 a b Dasgupta Partha 2021 The Economics of Biodiversity The Dasgupta Review Headline Messages PDF UK government p 1 Retrieved 16 December 2021 Biodiversity is declining faster than at any time in human history Current extinction rates for example are around 100 to 1 000 times higher than the baseline rate and they are increasing De Vos JM Joppa LN Gittleman JL Stephens PR Pimm SL April 2015 Estimating the normal background rate of species extinction PDF Conservation Biology 29 2 452 62 Bibcode 2015ConBi 29 452D doi 10 1111 cobi 12380 PMID 25159086 S2CID 19121609 Ceballos G Ehrlich PR Raven PH June 2020 Vertebrates on the brink as indicators of biological annihilation and the sixth mass extinction Proceedings of the National Academy of Sciences of the United States of America 117 24 13596 13602 Bibcode 2020PNAS 11713596C doi 10 1073 pnas 1922686117 PMC 7306750 PMID 32482862 Researches find threat from biodiversity loss equals climate change threat Winnipeg Free Press 7 June 2012 Living Planet Report 2016 Risk and resilience in a new era PDF Report World Wildlife Fund International 2016 Archived PDF from the original on 7 August 2021 Retrieved 20 July 2022 Living Planet Report 2014 PDF World Wildlife Fund archived from the original PDF on 6 October 2014 retrieved 4 October 2014 Hallmann Caspar A Sorg Martin Jongejans Eelke Siepel Henk Hofland Nick Schwan Heinz Stenmans Werner Muller Andreas Sumser Hubert Horren Thomas Goulson Dave 18 October 2017 More than 75 percent decline over 27 years in total flying insect biomass in protected areas PLOS ONE 12 10 e0185809 Bibcode 2017PLoSO 1285809H doi 10 1371 journal pone 0185809 ISSN 1932 6203 PMC 5646769 PMID 29045418 Carrington Damian 18 October 2017 Warning of ecological Armageddon after dramatic plunge in insect numbers The Guardian Archived from the original on 11 July 2022 Retrieved 20 July 2022 Briggs Helen 10 September 2020 Wildlife in catastrophic decline due to human destruction scientists warn BBC Retrieved 3 December 2020 Biodiversity Almost half of animals in decline research shows BBC 23 May 2023 Retrieved 10 June 2023 Finn Catherine Grattarola Florencia Pincheira Donoso Daniel 2023 More losers than winners investigating Anthropocene defaunation through the diversity of population trends Biological Reviews 98 5 1732 1748 doi 10 1111 brv 12974 PMID 37189305 S2CID 258717720 Paddison Laura 22 May 2023 Global loss of wildlife is significantly more alarming than previously thought according to a new study CNN Retrieved 10 June 2023 Vignieri S 25 July 2014 Vanishing fauna Special issue Science 345 6195 392 412 Bibcode 2014Sci 345 392V doi 10 1126 science 345 6195 392 PMID 25061199 Strong evidence shows Sixth Mass Extinction of global biodiversity in progress EurekAlert 13 January 2022 Retrieved 17 February 2022 Dirzo Rodolfo Hillary S Young Mauro Galetti Gerardo Ceballos Nick J B Isaac Ben Collen 2014 Defaunation in the Anthropocene PDF Science 345 6195 401 406 Bibcode 2014Sci 345 401D doi 10 1126 science 1251817 PMID 25061202 S2CID 206555761 In the past 500 years humans have triggered a wave of extinction threat and local population declines that may be comparable in both rate and magnitude with the five previous mass extinctions of Earth s history a b Wake D B Vredenburg V T 2008 Are we in the midst of the sixth mass extinction A view from the world of amphibians Proceedings of the National Academy of Sciences of the United States of America 105 Suppl 1 11466 11473 Bibcode 2008PNAS 10511466W doi 10 1073 pnas 0801921105 PMC 2556420 PMID 18695221 Koh LP Dunn RR Sodhi NS Colwell RK Proctor HC Smith VS 2004 Species coextinctions and the biodiversity crisis Science 305 5690 1632 1634 Bibcode 2004Sci 305 1632K doi 10 1126 science 1101101 PMID 15361627 S2CID 30713492 permanent dead link McCallum Malcolm L September 2007 Amphibian Decline or Extinction Current Declines Dwarf Background Extinction Rate Journal of Herpetology 41 3 483 491 doi 10 1670 0022 1511 2007 41 483 ADOECD 2 0 CO 2 S2CID 30162903 Jackson J B C 2008 Colloquium Paper Ecological extinction and evolution in the brave new ocean Proceedings of the National Academy of Sciences 105 Suppl 1 11458 11465 Bibcode 2008PNAS 10511458J doi 10 1073 pnas 0802812105 PMC 2556419 PMID 18695220 Dunn Robert R August 2005 Modern Insect Extinctions the Neglected Majority Conservation Biology 19 4 1030 1036 Bibcode 2005ConBi 19 1030D doi 10 1111 j 1523 1739 2005 00078 x S2CID 38218672 Ceballos Gerardo Ehrlich Paul R Barnosky Anthony D Garcia Andres Pringle Robert M Palmer Todd M 2015 Accelerated modern human induced species losses Entering the sixth mass extinction Science Advances 1 5 e1400253 Bibcode 2015SciA 1E0253C doi 10 1126 sciadv 1400253 PMC 4640606 PMID 26601195 58 59 60 61 62 63 64 65 66 UK Government Official Documents February 2021 The Economics of Biodiversity The Dasgupta Review Headline Messages p 1 Lovett Richard A 2 May 2006 Endangered Species List Expands to 16 000 National Geographic Archived from the original on 5 August 2017 IUCN Red List of Threatened Species Stokstad Erik 6 May 2019 Landmark analysis documents the alarming global decline of nature Science doi 10 1126 science aax9287 For the first time at a global scale the report has ranked the causes of damage Topping the list changes in land use principally agriculture that have destroyed habitat Second hunting and other kinds of exploitation These are followed by climate change pollution and invasive species which are being spread by trade and other activities Climate change will likely overtake the other threats in the next decades the authors note Driving these threats are the growing human population which has doubled since 1970 to 7 6 billion and consumption Per capita of use of materials is up 15 over the past 5 decades Pimm SL Jenkins CN Abell R Brooks TM Gittleman JL Joppa LN et al May 2014 The biodiversity of species and their rates of extinction distribution and protection Science 344 6187 1246752 doi 10 1126 science 1246752 PMID 24876501 S2CID 206552746 The overarching driver of species extinction is human population growth and increasing per capita consumption Cafaro Philip Hansson Pernilla Gotmark Frank August 2022 Overpopulation is a major cause of biodiversity loss and smaller human populations are necessary to preserve what is left PDF Biological Conservation 272 109646 Bibcode 2022BCons 27209646C doi 10 1016 j biocon 2022 109646 ISSN 0006 3207 S2CID 250185617 Conservation biologists standardly list five main direct drivers of biodiversity loss habitat loss overexploitation of species pollution invasive species and climate change The Global Assessment Report on Biodiversity and Ecosystem Services found that in recent decades habitat loss was the leading cause of terrestrial biodiversity loss while overexploitation overfishing was the most important cause of marine losses IPBES 2019 All five direct drivers are important on land and at sea and all are made worse by larger and denser human populations Crist Eileen Mora Camilo Engelman Robert 21 April 2017 The interaction of human population food production and biodiversity protection Science 356 6335 260 264 Bibcode 2017Sci 356 260C doi 10 1126 science aal2011 PMID 28428391 S2CID 12770178 Retrieved 2 January 2023 Ceballos Gerardo Ehrlich Paul R 2023 Mutilation of the tree of life via mass extinction of animal genera Proceedings of the National Academy of Sciences of the United States of America 120 39 e2306987120 Bibcode 2023PNAS 12006987C doi 10 1073 pnas 2306987120 PMC 10523489 PMID 37722053 Hughes Alice C Tougeron Kevin Martin Dominic A Menga Filippo Rosado Bruno H P Villasante Sebastian Madgulkar Shweta Goncalves Fernando Geneletti Davide Diele Viegas Luisa Maria Berger Sebastian Colla Sheila R de Andrade Kamimura Vitor Caggiano Holly Melo Felipe 1 January 2023 Smaller human populations are neither a necessary nor sufficient condition for biodiversity conservation Biological Conservation 277 109841 Bibcode 2023BCons 27709841H doi 10 1016 j biocon 2022 109841 ISSN 0006 3207 Through examining the drivers of biodiversity loss in highly biodiverse countries we show that it is not population driving the loss of habitats but rather the growth of commodities for export particularly soybean and oil palm primarily for livestock feed or biofuel consumption in higher income economies Ketcham Christopher 3 December 2022 Addressing Climate Change Will Not Save the Planet The Intercept Retrieved 8 December 2022 Caro Tim Rowe Zeke et al 2022 An inconvenient misconception Climate change is not the principal driver of biodiversity loss Conservation Letters 15 3 e12868 Bibcode 2022ConL 15E2868C doi 10 1111 conl 12868 S2CID 246172852 Clay Keith Holah Jenny 10 September 1999 Fungal Endophyte Symbiosis and Plant Diversity in Successional Fields Science 285 5434 1742 1744 doi 10 1126 science 285 5434 1742 ISSN 0036 8075 PMID 10481011 a b Morand Serge Krasnov Boris R 1 September 2010 The Biogeography of Host Parasite Interactions Oxford University Press pp 93 94 ISBN 978 0 19 956135 3 Retrieved 28 June 2011 a b c d Cardinale Bradley J et al March 2011 The functional role of producer diversity in ecosystems American Journal of Botany 98 3 572 592 doi 10 3732 ajb 1000364 hdl 2027 42 141994 PMID 21613148 S2CID 10801536 A Durable Yet Vulnerable Eden in Amazonia Dot Earth blog New York Times 20 January 2010 Retrieved 2 February 2013 Margot S Bass Matt Finer Clinton N Jenkins Holger Kreft Diego F Cisneros Heredia Shawn F McCracken Nigel C A Pitman Peter H English Kelly Swing Gorky Villa Anthony Di Fiore Christian C Voigt Thomas H Kunz 2010 Global Conservation Significance of Ecuador s Yasuni National Park PLOS ONE 5 1 e8767 Bibcode 2010PLoSO 5 8767B doi 10 1371 journal pone 0008767 PMC 2808245 PMID 20098736 Benton M J 2001 Biodiversity on land and in the sea Geological Journal 36 3 4 211 230 Bibcode 2001GeolJ 36 211B doi 10 1002 gj 877 S2CID 140675489 a b c d e f g h i The State of the World s Forests 2020 In brief Forests biodiversity and people Rome Italy FAO amp UNEP 2020 doi 10 4060 ca8985en ISBN 978 92 5 132707 4 S2CID 241416114 text was added from this source which has a Wikipedia specific licence statement a b c Mora C et al 2011 How Many Species Are There on Earth and in the Ocean PLOS Biology 9 8 e1001127 doi 10 1371 journal pbio 1001127 PMC 3160336 PMID 21886479 a b Microorganisms Editorial Office 9 January 2019 Acknowledgement to Reviewers of Microorganisms in 2018 Microorganisms 7 1 13 doi 10 3390 microorganisms7010013 PMC 6352028 Global Forest Resource Assessment 2020 Food and Agriculture Organization Retrieved 30 January 2023 The State of the World s Forests 2020 Forests biodiversity and people EN AR RU World ReliefWeb reliefweb int September 2020 Retrieved 30 January 2023 39 of the EU is covered with forests ec europa eu Retrieved 30 January 2023 Cavallito Matteo 8 April 2021 European forests are expanding But their future is unwritten Re Soil Foundation Retrieved 30 January 2023 Mora C Robertson DR 2005 Causes of latitudinal gradients in species richness a test with fishes of the Tropical Eastern Pacific PDF Ecology 86 7 1771 1792 Bibcode 2005Ecol 86 1771M doi 10 1890 04 0883 Archived from the original PDF on 4 March 2016 Retrieved 25 December 2012 Hillebrand H 2004 On the generality of the latitudinal diversity gradient PDF The American Naturalist 163 2 192 211 doi 10 1086 381004 PMID 14970922 S2CID 9886026 Karakassis Ioannis Moustakas Aristides September 2005 How diverse is aquatic biodiversity research Aquatic Ecology 39 3 367 375 Bibcode 2005AqEco 39 367M doi 10 1007 s10452 005 6041 y S2CID 23630051 Bahram Mohammad Hildebrand Falk Forslund Sofia K Anderson Jennifer L Soudzilovskaia Nadejda A Bodegom Peter M Bengtsson Palme Johan Anslan Sten Coelho Luis Pedro Harend Helery Huerta Cepas Jaime Medema Marnix H Maltz Mia R Mundra Sunil Olsson Pal Axel August 2018 Structure and function of the global topsoil microbiome Nature 560 7717 233 237 Bibcode 2018Natur 560 233B doi 10 1038 s41586 018 0386 6 hdl 1887 73861 ISSN 1476 4687 PMID 30069051 S2CID 256768771 Bickel Samuel Or Dani 8 January 2020 Soil bacterial diversity mediated by microscale aqueous phase processes across biomes Nature Communications 11 1 116 Bibcode 2020NatCo 11 116B doi 10 1038 s41467 019 13966 w ISSN 2041 1723 PMC 6949233 PMID 31913270 Cazzolla Gatti R 2016 The fractal nature of the latitudinal biodiversity gradient Biologia 71 6 669 672 Bibcode 2016Biolg 71 669C doi 10 1515 biolog 2016 0077 S2CID 199471847 Cogitore Clement 1983 January 1988 Hypothesis ISBN 9780309037396 OCLC 968249007 a href Template Citation html title Template Citation citation a CS1 maint numeric names authors list link Biodiversity A Z Biodiversity Hotspots Myers N 1988 Threatened biotas hot spots in tropical forests Environmentalist 8 3 187 208 doi 10 1007 BF02240252 PMID 12322582 S2CID 2370659 Myers N 1990 The biodiversity challenge expanded hot spots analysis PDF Environmentalist 10 4 243 256 Bibcode 1990ThEnv 10 243M CiteSeerX 10 1 1 468 8666 doi 10 1007 BF02239720 PMID 12322583 S2CID 22995882 Archived from the original PDF on 9 September 2022 Retrieved 1 November 2017 Tittensor D et al 2011 Global patterns and predictors of marine biodiversity across taxa PDF Nature 466 7310 1098 1101 Bibcode 2010Natur 466 1098T doi 10 1038 nature09329 PMID 20668450 S2CID 4424240 Archived from the original PDF on 31 August 2021 Retrieved 25 December 2012 McKee Jeffrey K December 2004 Sparing Nature The Conflict Between Human Population Growth and Earth s Biodiversity Rutgers University Press p 108 ISBN 978 0 8135 3558 6 Retrieved 28 June 2011 Galindo Leal Carlos 2003 The Atlantic Forest of South America Biodiversity Status Threats and Outlook Washington Island Press p 35 ISBN 978 1 55963 988 0 Myers Norman Mittermeier Russell A Mittermeier Cristina G da Fonseca Gustavo A B Kent Jennifer February 2000 Biodiversity hotspots for conservation priorities Nature 403 6772 853 858 Bibcode 2000Natur 403 853M doi 10 1038 35002501 eISSN 1476 4687 ISSN 0028 0836 PMID 10706275 S2CID 4414279 Retrieved 9 August 2022 Colombia in the World Alexander von Humboldt Institute for Research on Biological Resources Archived from the original on 29 October 2013 Retrieved 30 December 2013 godfrey laurie isolation and biodiversity pbs org Retrieved 22 October 2017 a b Harrison Susan P 15 May 2013 Plant Endemism in California Plant and Animal Endemism in California University of California Press pp 43 76 doi 10 1525 california 9780520275546 003 0004 ISBN 978 0 520 27554 6 Madagascar A World Apart Eden Evolution www pbs org Retrieved 6 June 2019 Normile Dennis 10 September 2010 Saving Forests to Save Biodiversity Science 329 5997 1278 1280 Bibcode 2010Sci 329 1278N doi 10 1126 science 329 5997 1278 PMID 20829464 White Gilbert 1887 letter xx The Natural History of Selborne With A Naturalist s Calendar amp Additional Observations Scott Algeo T J Scheckler S E 29 January 1998 Terrestrial marine teleconnections in the Devonian links between the evolution of land plants weathering processes and marine anoxic events Philosophical Transactions of the Royal Society B Biological Sciences 353 1365 113 130 doi 10 1098 rstb 1998 0195 PMC 1692181 Rosing M Bird D Sleep N Bjerrum C 2010 No climate paradox under the faint early Sun Nature 464 7289 744 747 Bibcode 2010Natur 464 744R doi 10 1038 nature08955 PMID 20360739 S2CID 205220182 a b Alroy J Marshall CR Bambach RK Bezusko K Foote M Fursich FT Hansen TA Holland SM et al 2001 Effects of sampling standardization on estimates of Phanerozoic marine diversification Proceedings of the National Academy of Sciences of the United States of America 98 11 6261 6266 Bibcode 2001PNAS 98 6261A doi 10 1073 pnas 111144698 PMC 33456 PMID 11353852 Sahney S Benton M J amp Falcon Lang H J 2010 Rainforest collapse triggered Pennsylvanian tetrapod diversification in Euramerica Geology 38 12 1079 1082 Bibcode 2010Geo 38 1079S doi 10 1130 G31182 1 Sahney S amp Benton M J 2008 Recovery from the most profound mass extinction of all time Proceedings of the Royal Society B Biological Sciences 275 1636 759 765 doi 10 1098 rspb 2007 1370 PMC 2596898 PMID 18198148 Schopf J William Kudryavtsev Anatoliy B Czaja Andrew D Tripathi Abhishek B 5 October 2007 Evidence of Archean life Stromatolites and microfossils Precambrian Research Earliest Evidence of Life on Earth 158 3 4 141 155 Bibcode 2007PreR 158 141S doi 10 1016 j precamres 2007 04 009 a b Mapping the web of life Unep org Archived from the original on 14 February 2007 Retrieved 21 June 2009 Okasha S 2010 Does diversity always grow Nature 466 7304 318 Bibcode 2010Natur 466 318O doi 10 1038 466318a Stanford researchers discover that animal functional diversity started poor became richer over time biox stanford edu 11 March 2015 a b Hautmann Michael Bagherpour Borhan Brosse Morgane Frisk Asa Hofmann Richard Baud Aymon Nutzel Alexander Goudemand Nicolas Bucher Hugo Brayard Arnaud 2015 Competition in slow motion the unusual case of benthic marine communities in the wake of the end Permian mass extinction Palaeontology 58 5 871 901 Bibcode 2015Palgy 58 871H doi 10 1111 pala 12186 S2CID 140688908 a b c Markov AV Korotaev AV 2008 Hyperbolic growth of marine and continental biodiversity through the phanerozoic and community evolution Journal of General Biology 69 3 175 194 PMID 18677962 a b Markov A Korotayev A 2007 Phanerozoic marine biodiversity follows a hyperbolic trend Palaeoworld 16 4 311 318 doi 10 1016 j palwor 2007 01 002 National Survey Reveals Biodiversity Crisis Archived 7 June 2007 at the Wayback Machine American Museum of Natural History a b Wilson Edward O 1 January 2002 The Future of Life Alfred A Knopf ISBN 978 0 679 45078 8 Costanza R d Arge R de Groot R Farberk S Grasso M Hannon B Limburg Karin Naeem Shahid et al 1997 The value of the world s ecosystem services and natural capital PDF Nature 387 6630 253 260 Bibcode 1997Natur 387 253C doi 10 1038 387253a0 S2CID 672256 Archived from the original PDF on 26 December 2009 a b c d e f g h i j k l m n o p q r s t u Cardinale Bradley et al 2012 Biodiversity loss and its impact on humanity PDF Nature 486 7401 59 67 Bibcode 2012Natur 486 59C doi 10 1038 nature11148 PMID 22678280 S2CID 4333166 Wright Richard T and Bernard J Nebel Environmental Science toward a Sustainable Future Eighth ed Upper Saddle River N J Pearson Education 2002 Daniel T C et al 21 May 2012 Contributions of cultural services to the ecosystem services agenda Proceedings of the National Academy of Sciences 109 23 8812 8819 Bibcode 2012PNAS 109 8812D doi 10 1073 pnas 1114773109 PMC 3384142 PMID 22615401 Kiaer Lars P Skovgaard M Ostergard Hanne 1 December 2009 Grain yield increase in cereal variety mixtures A meta analysis of field trials Field Crops Research 114 3 361 373 doi 10 1016 j fcr 2009 09 006 a b Letourneau Deborah K 1 January 2011 Does plant diversity benefit agroecosystems A synthetic review Ecological Applications 21 1 9 21 Bibcode 2011EcoAp 21 9L doi 10 1890 09 2026 1 PMID 21516884 S2CID 11439673 Piotto Daniel 1 March 2008 A meta analysis comparing tree growth in monocultures and mixed plantations Forest Ecology and Management 255 3 4 781 786 doi 10 1016 j foreco 2007 09 065 Futuyma Douglas J Shaffer H Bradley Simberloff Daniel eds 1 January 2009 Annual Review of Ecology Evolution and Systematics Vol 40 2009 Palo Alto Calif Annual Reviews pp 573 592 ISBN 978 0 8243 1440 8 Philpott Stacy M Soong Oliver Lowenstein Jacob H Pulido Astrid Luz Lopez Diego Tobar 1 October 2009 Flynn Dan F B DeClerck Fabrice Functional richness and ecosystem services bird predation on arthropods in tropical agroecosystems Ecological Applications 19 7 1858 1867 Bibcode 2009EcoAp 19 1858P doi 10 1890 08 1928 1 PMID 19831075 S2CID 9867979 Van Bael Sunshine A et al April 2008 Birds as predators in tropical agroforestry systems Ecology 89 4 928 934 Bibcode 2008Ecol 89 928V doi 10 1890 06 1976 1 hdl 1903 7873 PMID 18481517 Vance Chalcraft Heather D et al 1 November 2007 The Influence of Intraguild Predation on Prey Suppression and Prey Release A Meta analysis Ecology 88 11 2689 2696 Bibcode 2007Ecol 88 2689V doi 10 1890 06 1869 1 PMID 18051635 S2CID 21458500 a b c d e Quijas Sandra Schmid Bernhard Balvanera Patricia 1 November 2010 Plant diversity enhances provision of ecosystem services A new synthesis Basic and Applied Ecology 11 7 582 593 Bibcode 2010BApEc 11 582Q CiteSeerX 10 1 1 473 7444 doi 10 1016 j baae 2010 06 009 Levine Jonathan M Adler Peter B Yelenik Stephanie G 6 September 2004 A meta analysis of biotic resistance to exotic plant invasions Ecology Letters 7 10 975 989 Bibcode 2004EcolL 7 975L doi 10 1111 j 1461 0248 2004 00657 x S2CID 85852363 Crowder David W et al 2010 Organic agriculture promotes evenness and natural pest control Nature 466 7302 109 112 Bibcode 2010Natur 466 109C doi 10 1038 nature09183 PMID 20596021 S2CID 205221308 Andow D A 1 January 1991 Vegetational Diversity and Arthropod Population Response Annual Review of Entomology 36 1 561 586 doi 10 1146 annurev en 36 010191 003021 Keesing Felicia et al December 2010 Impacts of biodiversity on the emergence and transmission of infectious diseases Nature 468 7324 647 652 Bibcode 2010Natur 468 647K doi 10 1038 nature09575 PMC 7094913 PMID 21124449 Johnson Pieter T J et al 13 February 2013 Biodiversity decreases disease through predictable changes in host community competence Nature 494 7436 230 233 Bibcode 2013Natur 494 230J doi 10 1038 nature11883 PMID 23407539 S2CID 205232648 Garibaldi L A et al 28 February 2013 Wild Pollinators Enhance Fruit Set of Crops Regardless of Honey Bee Abundance Science 339 6127 1608 1611 Bibcode 2013Sci 339 1608G doi 10 1126 science 1230200 hdl 11336 6844 PMID 23449997 S2CID 88564525 Costanza Robert et al 1997 The value of the world s ecosystem services and natural capital Nature 387 6630 253 260 Bibcode 1997Natur 387 253C doi 10 1038 387253a0 S2CID 672256 a b Hassan Rashid M et al 2006 Ecosystems and human well being current state and trends findings of the Condition and Trends Working Group of the Millennium Ecosystem Assessment Island Press p 105 ISBN 978 1 55963 228 7 a b Vandermeer John H 2011 The Ecology of Agroecosystems Jones amp Bartlett Learning ISBN 978 0 7637 7153 9 IPBES 26 June 2018 Assessment Report on Pollinators Pollination and Food Production ipbes org IPBES Retrieved 13 April 2021 Bommarco 2013 Ecological intensification harnessing ecosystem services for food security Trends in Ecology and Evolution 28 4 230 238 doi 10 1016 j tree 2012 10 012 PMID 23153724 a b c Rice Grassy Stunt Virus Lumrix net Archived from the original on 23 July 2011 Retrieved 21 June 2009 Wahl GM Robert de Saint Vincent B Derose ML 1984 Effect of chromosomal position on amplification of transfected genes in animal cells Nature 307 5951 516 520 Bibcode 1984Natur 307 516W doi 10 1038 307516a0 PMID 6694743 S2CID 4322191 Southern Corn Leaf Blight Archived from the original on 14 August 2011 Retrieved 13 November 2007 Aswathanarayana Uppugunduri 2012 Natural Resources Technology Economics amp Policy Leiden Netherlands CRC Press p 370 ISBN 978 0 203 12399 7 Aswathanarayana Uppugunduri 2012 Natural Resources Technology Economics amp Policy Leiden Netherlands CRC Press p 370 ISBN 978 0 203 12399 7 World Health Organization WHO and Secretariat of the Convention on Biological Diversity 2015 Connecting Global Priorities Biodiversity and Human Health a State of Knowledge Review See also Website of the Secretariat of the Convention on Biological Diversity on biodiversity and health Other relevant resources include Reports of the 1st and 2nd International Conferences on Health and Biodiversity Archived 7 January 2009 at the Wayback Machine See also Website of the UN COHAB Initiative Archived 4 February 2009 at the Wayback Machine a b Chivian Eric ed 15 May 2008 Sustaining Life How Human Health Depends on Biodiversity OUP US ISBN 978 0 19 517509 7 Corvalan Carlos Hales Simon Anthony J McMichael 2005 Ecosystems and Human Well being Health Synthesis World Health Organization p 28 ISBN 978 92 4 156309 3 2009 Climate Change and Biological Diversity Convention on Biological Diversity Retrieved 5 November 2009 Ramanujan Krishna 2 December 2010 Study Loss of species is bad for your health Cornell Chronicle Retrieved 20 July 2011 The World Bank 30 June 2010 Water and Development An Evaluation of World Bank Support 1997 2007 World Bank Publications p 79 ISBN 978 0 8213 8394 0 Drinking water World Health Organization Gaston Kevin J Warren Philip H Devine Wright Patrick Irvine Katherine N Fuller Richard A 2007 Psychological benefits of greenspace increase with biodiversity Biology Letters 3 4 390 394 doi 10 1098 rsbl 2007 0149 PMC 2390667 PMID 17504734 COHAB Initiative Biodiversity and Human Health the issues Cohabnet org Archived from the original on 5 September 2008 Retrieved 21 June 2009 World Wildlife Fund WWF Arguments for Protection website Wwf panda org Retrieved 24 September 2011 Science points to causes of COVID 19 United Nations Environmental Programm United Nations 22 May 2020 Retrieved 24 June 2020 Keesing Felicia Belden Lisa K Daszak Peter Dobson Andrew Harvell C Drew Holt Robert D Hudson Peter Jolles Anna Jones Kate E Mitchell Charles E Myers Samuel S Bogich Tiffany Ostfeld Richard S 1 December 2010 Impacts of biodiversity on the emergence and transmission of infectious diseases Nature 468 7324 647 652 Bibcode 2010Natur 468 647K doi 10 1038 nature09575 ISSN 1476 4687 PMC 7094913 PMID 21124449 Mendelsohn Robert Balick Michael J 1 April 1995 The value of undiscovered pharmaceuticals in tropical forests Economic Botany 49 2 223 228 doi 10 1007 BF02862929 S2CID 39978586 2006 Molecular Pharming GMO Compass Retrieved 5 November 2009 GMOcompass org Archived 8 February 2008 at the Wayback Machine Mendelsohn Robert Balick Michael J 1 July 1997 Notes on economic plants Economic Botany 51 3 328 doi 10 1007 BF02862103 S2CID 5430635 Harvey Alan L 1 October 2008 Natural products in drug discovery Drug Discovery Today 13 19 20 894 901 doi 10 1016 j drudis 2008 07 004 PMID 18691670 Hawkins E S Reich Reich MR 1992 Japanese originated pharmaceutical products in the United States from 1960 to 1989 an assessment of innovation Clin Pharmacol Ther 51 1 1 11 doi 10 1038 clpt 1992 1 PMID 1732073 S2CID 46010944 Roopesh J et al 10 February 2008 Marine organisms Potential Source for Drug Discovery PDF Current Science 94 3 292 Archived from the original PDF on 11 October 2011 Dhillion SS Svarstad H Amundsen C Bugge HC 2002 Bioprospecting Effects on environment and development Ambio 31 6 491 493 doi 10 1639 0044 7447 2002 031 0491 beoead 2 0 co 2 JSTOR 4315292 PMID 12436849 Cole A 16 July 2005 Looking for new compounds in sea is endangering ecosystem BMJ 330 7504 1350 doi 10 1136 bmj 330 7504 1350 d PMC 558324 PMID 15947392 COHAB Initiative on Natural Products and Medicinal Resources Cohabnet org Archived from the original on 25 October 2017 Retrieved 21 June 2009 IUCN WRI World Business Council for Sustainable Development Earthwatch Inst 2007 Business and Ecosystems Ecosystem Challenges and Business Implications Millennium Ecosystem Assessment 2005 Ecosystems and Human Well being Opportunities and Challenges for Business and Industry Business and Biodiversity webpage of the U N Convention on Biological Diversity Cbd int Retrieved 21 June 2009 WRI Corporate Ecosystem Services Review See also Examples of Ecosystem Service Based Risks Opportunities and Strategies Archived 1 April 2009 at the Wayback Machine Corporate Biodiversity Accounting See also Making the Natural Capital Declaration Accountable Tribot A Mouquet N Villeger S Raymond M Hoff F Boissery P Holon F Deter J 2016 Taxonomic and functional diversity increase the aesthetic value of coralligenous reefs PDF Scientific Reports 6 34229 Bibcode 2016NatSR 634229T doi 10 1038 srep34229 PMC 5039688 PMID 27677850 Broad William 19 November 1996 Paradise Lost Biosphere Retooled as Atmospheric Nightmare The New York Times Retrieved 10 April 2013 Ponti Crystal 3 March 2017 Rise of the Robot Bees Tiny Drones Turned into Artificial Pollinators NPR Retrieved 18 January 2018 LOSEY JOHN E VAUGHAN MACE 1 January 2006 The Economic Value of Ecological Services Provided by Insects BioScience 56 4 311 doi 10 1641 0006 3568 2006 56 311 TEVOES 2 0 CO 2 Species Evenness an overview ScienceDirect Topics www sciencedirect com Retrieved 25 February 2023 Chakraborty Jaya Palit Krishna Das Surajit 2022 Metagenomic approaches to study the culture independent bacterial diversity of a polluted environment a case study on north eastern coast of Bay of Bengal India Microbial Biodegradation and Bioremediation Elsevier pp 81 107 doi 10 1016 B978 0 323 85455 9 00014 X ISBN 9780323854559 S2CID 244883885 retrieved 25 February 2023 Hamilton Andrew J 1 April 2005 Species diversity or biodiversity Journal of Environmental Management 75 1 89 92 doi 10 1016 j jenvman 2004 11 012 ISSN 0301 4797 PMID 15748806 Ortiz Burgos Selene 2016 Shannon Weaver Diversity Index in Kennish Michael J ed Encyclopedia of Estuaries Encyclopedia of Earth Sciences Series Dordrecht Springer Netherlands pp 572 573 doi 10 1007 978 94 017 8801 4 233 ISBN 978 94 017 8801 4 retrieved 25 February 2023 Allaby Michael 2010 Simpson s diversity index A Dictionary of Ecology Oxford University Press doi 10 1093 acref 9780199567669 001 0001 ISBN 978 0 19 956766 9 retrieved 25 February 2023 Morris E Kathryn Caruso Tancredi Buscot Francois Fischer Markus Hancock Christine Maier Tanja S Meiners Torsten Muller Caroline Obermaier Elisabeth Prati Daniel Socher Stephanie A Sonnemann Ilja Waschke Nicole Wubet Tesfaye Wurst Susanne September 2014 Choosing and using diversity indices insights for ecological applications from the German Biodiversity Exploratories Ecology and Evolution 4 18 3514 3524 Bibcode 2014EcoEv 4 3514M doi 10 1002 ece3 1155 ISSN 2045 7758 PMC 4224527 PMID 25478144 Wilson Edward O 2000 On the Future of Conservation Biology Conservation Biology 14 1 1 3 Bibcode 2000ConBi 14 1W doi 10 1046 j 1523 1739 2000 00000 e1 x S2CID 83906221 Nee S 2004 More than meets the eye Nature 429 6994 804 805 Bibcode 2004Natur 429 804N doi 10 1038 429804a PMID 15215837 S2CID 1699973 Stork Nigel E 2007 Biodiversity World of insects Nature 448 7154 657 658 Bibcode 2007Natur 448 657S doi 10 1038 448657a PMID 17687315 S2CID 9378467 Thomas J A Telfer M G Roy D B Preston C D Greenwood J J D Asher J Fox R Clarke R T Lawton J H 2004 Comparative Losses of British Butterflies Birds and Plants and the Global Extinction Crisis Science 303 5665 1879 1881 Bibcode 2004Sci 303 1879T doi 10 1126 science 1095046 PMID 15031508 S2CID 22863854 Dunn Robert R 2005 Modern Insect Extinctions the Neglected Majority Conservation Biology 19 4 1030 1036 Bibcode 2005ConBi 19 1030D doi 10 1111 j 1523 1739 2005 00078 x S2CID 38218672 Torchin Mark E Lafferty Kevin D Dobson Andrew P McKenzie Valerie J Kuris Armand M 6 February 2003 Introduced species and their missing parasites Nature 421 6923 628 630 Bibcode 2003Natur 421 628T doi 10 1038 nature01346 PMID 12571595 S2CID 4384385 Levine Jonathan M D Antonio Carla M 1 October 1999 Elton Revisited A Review of Evidence Linking Diversity and Invasibility Oikos 87 1 15 Bibcode 1999Oikos 87 15L doi 10 2307 3546992 JSTOR 3546992 S2CID 13987518 Levine J M 5 May 2000 Species Diversity and Biological Invasions Relating Local Process to Community Pattern Science 288 5467 852 854 Bibcode 2000Sci 288 852L doi 10 1126 science 288 5467 852 PMID 10797006 S2CID 7363143 GUREVITCH J PADILLA D 1 September 2004 Are invasive species a major cause of extinctions Trends in Ecology amp Evolution 19 9 470 474 doi 10 1016 j tree 2004 07 005 PMID 16701309 Sax Dov F Gaines Steven D Brown James H 1 December 2002 Species Invasions Exceed Extinctions on Islands Worldwide A Comparative Study of Plants and Birds The American Naturalist 160 6 766 783 doi 10 1086 343877 PMID 18707464 S2CID 8628360 Jude David 1995 Munawar M ed The lake Huron ecosystem ecology fisheries and management Amsterdam S P B Academic Publishing ISBN 978 90 5103 117 1 Are invasive plants a threat to native biodiversity It depends on the spatial scale ScienceDaily 11 April 2011 Higgins Steven I Richardson David M 1998 Pine invasions in the southern hemisphere Modelling interactions between organism environment and disturbance Plant Ecology 135 1 79 93 doi 10 1023 a 1009760512895 S2CID 9188012 Mooney H A Cleland EE 2001 The evolutionary impact of invasive species Proceedings of the National Academy of Sciences 98 10 5446 5451 Bibcode 2001PNAS 98 5446M doi 10 1073 pnas 091093398 PMC 33232 PMID 11344292 Glossary definitions from the following publication Aubry C R Shoal and V Erickson 2005 Grass cultivars their origins development and use on national forests and grasslands in the Pacific Northwest USDA Forest Service 44 pages plus appendices Native Seed Network NSN Institute for Applied Ecology Corvallis OR Nativeseednetwork org Archived from the original on 22 February 2006 Retrieved 21 June 2009 Rhymer Judith M Simberloff Daniel 1996 Extinction by Hybridization and Introgression Annual Review of Ecology and Systematics 27 83 109 doi 10 1146 annurev ecolsys 27 1 83 JSTOR 2097230 Potts Bradley M Barbour Robert C Hingston Andrew B 2001 Genetic Pollution from Farm Forestry Using Eucalypt Species and Hydrids A Report for the RIRDC L amp WA FWPRDC Joint Venture Agroforestry Program RIRDC ISBN 978 0 642 58336 9 a href Template Cite book html title Template Cite book cite book a journal ignored help RIRDC gov au RIRDC Publication No 01 114 RIRDC Project No CPF 3A Archived 5 January 2016 at the Wayback Machine Australian Government Rural Industrial Research and Development Corporation a b Genetic Pollution The Great Genetic Scandal Archived 18 May 2009 at the Wayback Machine Pollan Michael 9 December 2001 The year in ideas A TO Z Genetic Pollution The New York Times Archived from the original on 23 February 2022 Ellstrand Norman C 2003 Dangerous Liaisons When Cultivated Plants Mate with Their Wild Relatives Vol 22 The Johns Hopkins University Press pp 29 30 doi 10 1038 nbt0104 29 ISBN 978 0 8018 7405 5 S2CID 41155573 a href Template Cite book html title Template Cite book cite book a journal ignored help Reviewed in Strauss Steven H DiFazio Stephen P 2004 Hybrids abounding Nature Biotechnology 22 1 29 30 doi 10 1038 nbt0104 29 S2CID 41155573 Zaid A 1999 Genetic pollution Uncontrolled spread of genetic information Glossary of Biotechnology and Genetic Engineering Food and Agriculture Organization of the United Nations ISBN 978 92 5 104369 1 Retrieved 21 June 2009 Genetic pollution Uncontrolled escape of genetic information frequently referring to products of genetic engineering into the genomes of organisms in the environment where those genes never existed before Searchable Biotechnology Dictionary University of Minnesota Archived from the original on 10 February 2008 The many facets of pollution Bologna University Retrieved 18 May 2012 Millennium Ecosystem Assessment 2005 World Resources Institute Washington DC Ecosystems and Human Well being Biodiversity Synthesis a b c Soule Michael E 1986 What is conservation biology BioScience 35 11 727 734 CiteSeerX 10 1 1 646 7332 doi 10 2307 1310054 JSTOR 1310054 Davis Peter 1996 Museums and the natural environment the role of natural history museums in biological conservation Leicester University Press ISBN 978 0 7185 1548 5 a b Dyke Fred Van 29 February 2008 Conservation Biology Foundations Concepts Applications Springer Science amp Business Media ISBN 978 1 4020 6890 4 Hunter Malcolm L 1996 Fundamentals of Conservation Biology Blackwell Science ISBN 978 0 86542 371 8 Bowen B W 1999 Preserving genes species or ecosystems Healing the fractured foundations of conservation policy Molecular Ecology 8 12 Suppl 1 S5 S10 Bibcode 1999MolEc 8 B doi 10 1046 j 1365 294x 1999 00798 x PMID 10703547 S2CID 33096004 Soule Michael E 1 January 1986 Conservation Biology The Science of Scarcity and Diversity Sinauer Associates ISBN 978 0 87893 794 3 Margules C R Pressey R L 2000 Systematic conservation planning PDF Nature 405 6783 243 253 doi 10 1038 35012251 PMID 10821285 S2CID 4427223 Archived from the original PDF on 5 February 2009 a b Knozowski Pawel Nowakowski Jacek J Stawicka Anna Maria Gorski Andrzej Dulisz Beata 10 November 2023 Effect of nature protection and management of grassland on biodiversity Case from big flooded river valley NE Poland Science of the Total Environment 898 165280 Bibcode 2023ScTEn 898p5280K doi 10 1016 j scitotenv 2023 165280 ISSN 0048 9697 PMID 37419354 Example Gascon C Collins J P Moore R D Church D R McKay J E and Mendelson J R III eds 2007 Amphibian Conservation Action Plan IUCN SSC Amphibian Specialist Group Gland Switzerland and Cambridge UK 64pp Amphibians org Archived 4 July 2007 at the Wayback Machine see also Millenniumassessment org Europa eu Archived 12 February 2009 at the Wayback Machine Luck Gary W Daily Gretchen C Ehrlich Paul R 2003 Population diversity and ecosystem services PDF Trends in Ecology amp Evolution 18 7 331 336 CiteSeerX 10 1 1 595 2377 doi 10 1016 S0169 5347 03 00100 9 Archived from the original PDF on 19 February 2006 Millennium Ecosystem Assessment www millenniumassessment org Archived from the original on 13 August 2015 Beantwoording vragen over fokken en doden van gezonde dieren in dierentuinen PDF in Dutch Ministry of Economic Affairs Netherlands 25 March 2014 Archived from the original PDF on 14 July 2014 Retrieved 9 June 2014 Barcode of Life Barcoding si edu 26 May 2010 Archived from the original on 22 November 2022 Retrieved 24 September 2011 Earth Times show 303405 camel cull would help curb global warming ht 1 August 2012 Archived from the original on 1 August 2012 Belgium creating 45 seed gardens gene banks with intent to reintroduction Hbvl be 8 September 2011 Retrieved 24 September 2011 Kaiser J 21 September 2001 Bold Corridor Project Confronts Political Reality Science 293 5538 2196 2199 doi 10 1126 science 293 5538 2196 PMID 11567122 S2CID 153587982 Conservationists Use Triage to Determine which Species to Save and Not Like battlefield medics conservationists are being forced to explicitly apply triage to determine which creatures to save and which to let go 23 July 2012 Scientific American Jones Walters L Mulder I 2009 Valuing nature The economics of biodiversity PDF Journal for Nature Conservation 17 4 245 247 Bibcode 2009JNatC 17 245J doi 10 1016 j jnc 2009 06 001 Mulongoy Kalemani Jo Chape Stuart 2004 Protected Areas and Biodiversity An Overview of Key Issues PDF Montreal Canada and Cambridge UK CBD Secretariat and UNEP WCMC pp 15 and 25 Archived from the original PDF on 22 September 2017 Retrieved 23 October 2017 Baillie Jonathan Ya Ping Zhang 14 September 2018 Space for nature Science 361 6407 1051 Bibcode 2018Sci 361 1051B doi 10 1126 science aau1397 PMID 30213888 Allan James R Possingham Hugh P Atkinson Scott C Waldron Anthony Di Marco Moreno Butchart Stuart H M Adams Vanessa M Kissling W Daniel Worsdell Thomas Sandbrook Chris Gibbon Gwili 3 June 2022 The minimum land area requiring conservation attention to safeguard biodiversity Science 376 6597 1094 1101 Bibcode 2022Sci 376 1094A doi 10 1126 science abl9127 hdl 11573 1640006 ISSN 0036 8075 PMID 35653463 S2CID 233423065 a b Paddison Laura 19 December 2022 More than 190 countries sign landmark agreement to halt the biodiversity crisis CNN Retrieved 20 December 2022 Lambert Jonathan 4 September 2020 Protecting half the planet could help solve climate change and save species Science News Retrieved 5 September 2020 Protected areas International Union for Conservation of Nature IUCN 20 August 2015 FAO Sustainable Forest Management SFM Toolbox Archived from the original on 30 November 2020 Retrieved 8 December 2020 span, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.